Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
2.
Calcif Tissue Int ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641703

RESUMO

Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder of skeletal fragility with an incidence of roughly 1:15,000. Approximately 85% of the pathogenic variants responsible for OI are in the type I collagen genes, COL1A1 and COL1A2, with the remaining pathogenic OI variants spanning at least 20 additional genetic loci that often involve type I collagen post-translational modification, folding, and intracellular transport as well as matrix incorporation and mineralization. In addition to being the most abundant collagen in the body, type I collagen is an important structural and extracellular matrix signaling molecule in multiple organ systems and tissues. Thus, OI disease-causing variants result not only in skeletal fragility, decreased bone mineral density (BMD), kyphoscoliosis, and short stature, but can also result in hearing loss, dentinogenesis imperfecta, blue gray sclera, cardiopulmonary abnormalities, and muscle weakness. The extensive genetic and clinical heterogeneity in OI has necessitated the generation of multiple mouse models, the growing awareness of non-skeletal organ and tissue involvement, and OI being more broadly recognized as a type I collagenopathy.This has driven the investigation of mutation-specific skeletal and extra-skeletal manifestations and broadened the search of potential mechanistic therapeutic strategies. The purpose of this review is to outline several of the extra-skeletal manifestations that have recently been characterized through the use of genetically and phenotypically heterogeneous mouse models of osteogenesis imperfecta, demonstrating the significant potential impact of OI disease-causing variants as a collagenopathy (affecting multiple organ systems and tissues), and its implications to overall health.

3.
Proc Biol Sci ; 289(1983): 20221542, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36168758

RESUMO

Over the course of history, humans have moved crops from their regions of origin to new locations across the world. The social, cultural and economic drivers of these movements have generated differences not only between current distributions of crops and their climatic origins, but also between crop distributions and climate suitability for their production. Although these mismatches are particularly important to inform agricultural strategies on climate change adaptation, they have, to date, not been quantified consistently at the global level. Here, we show that the relationships between the distributions of 12 major food crops and climate suitability for their yields display strong variation globally. After investigating the role of biophysical, socio-economic and historical factors, we report that high-income world regions display a better match between crop distribution and climate suitability. In addition, although crops are farmed predominantly in the same climatic range as their wild progenitors, climate suitability is not necessarily higher there, a pattern that reflects the legacy of domestication history on current crop distribution. Our results reveal how far the global distribution of major crops diverges from their climatic optima and call for greater consideration of the multiple dimensions of the crop socio-ecological niche in climate change adaptive strategies.


Assuntos
Mudança Climática , Produtos Agrícolas , Agricultura/métodos , Ecossistema , Fazendas , Humanos
4.
Mol Genet Metab ; 136(4): 315-323, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35725939

RESUMO

Osteogenesis imperfecta (OI) is rare heritable connective tissue disorder that most often arises from mutations in the type I collagen genes, COL1A1 and COL1A2, displaying a range of symptoms including skeletal fragility, short stature, blue-gray sclera, and muscle weakness. Recent investigations into the intrinsic muscle weakness have demonstrated reduced contractile generating force in some murine models consistent with patient population studies, as well as alterations in whole body bioenergetics. Muscle weakness is found in approximately 80% of patients and has been equivocal in OI mouse models. Understanding the mechanism responsible for OI muscle weakness is crucial in building our knowledge of muscle bone cross-talk via mechanotransduction and biochemical signaling, and for potential novel therapeutic approaches. In this study we evaluated skeletal muscle mitochondrial function and whole-body bioenergetics in the heterozygous +/G610C (Amish) mouse modeling mild/moderate human type I/VI OI and minimal skeletal muscle weakness. Our analyses revealed several changes in the +/G610C mouse relative to their wildtype littermates including reduced state 3 mitochondrial respiration, increased mitochondrial citrate synthase activity, increased Parkin and p62 protein content, and an increased respiratory quotient. These changes may represent the ability of the +/G610C mouse to compensate for mitochondrial and metabolic changes that may arise due to type I collagen mutations and may also account for the lack of muscle weakness observed in the +/G610C model relative to the more severe OI models.


Assuntos
Osteogênese Imperfeita , Animais , Colágeno Tipo I/genética , Modelos Animais de Doenças , Humanos , Mecanotransdução Celular , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo
5.
Mol Genet Metab ; 132(4): 244-253, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674196

RESUMO

Osteogenesis imperfecta (OI) is a heritable connective tissue disorder with patients exhibiting bone fragility and muscle weakness. The synergistic biochemical and biomechanical relationship between bone and muscle is a critical potential therapeutic target, such that muscle weakness should not be ignored. Previous studies demonstrated mitochondrial dysfunction in the skeletal muscle of oim/oim mice, which model a severe human type III OI. Here, we further characterize this mitochondrial dysfunction and evaluate several parameters of whole body and skeletal muscle metabolism. We demonstrate reduced mitochondrial respiration in female gastrocnemius muscle, but not in liver or heart mitochondria, suggesting that mitochondrial dysfunction is not global in the oim/oim mouse. Myosin heavy chain fiber type distributions were altered in the oim/oim soleus muscle with a decrease (-33 to 50%) in type I myofibers and an increase (+31%) in type IIa myofibers relative to their wildtype (WT) littermates. Additionally, altered body composition and increased energy expenditure were observed oim/oim mice relative to WT littermates. These results suggest that skeletal muscle mitochondrial dysfunction is linked to whole body metabolic alterations and to skeletal muscle weakness in the oim/oim mouse.


Assuntos
Metabolismo Energético/genética , Mitocôndrias Cardíacas/genética , Músculo Esquelético/metabolismo , Osteogênese Imperfeita/genética , Animais , Modelos Animais de Doenças , Fêmur/metabolismo , Fêmur/patologia , Humanos , Camundongos , Mitocôndrias Cardíacas/fisiologia , Músculo Esquelético/patologia , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Índice de Gravidade de Doença
6.
New Phytol ; 230(3): 1169-1184, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484583

RESUMO

Phytosterols are primary plant metabolites that have fundamental structural and regulatory functions. They are also essential nutrients for phytophagous insects, including pollinators, that cannot synthesize sterols. Despite the well-described composition and diversity in vegetative plant tissues, few studies have examined phytosterol diversity in pollen. We quantified 25 pollen phytosterols in 122 plant species (105 genera, 51 families) to determine their composition and diversity across plant taxa. We searched literature and databases for plant phylogeny, environmental conditions, and pollinator guilds of the species to examine the relationships with pollen sterols. 24-methylenecholesterol, sitosterol and isofucosterol were the most common and abundant pollen sterols. We found phylogenetic clustering of twelve individual sterols, total sterol content and sterol diversity, and of sterol groupings that reflect their underlying biosynthesis pathway (C-24 alkylation, ring B desaturation). Plants originating in tropical-like climates (higher mean annual temperature, lower temperature seasonality, higher precipitation in wettest quarter) were more likely to record higher pollen sterol content. However, pollen sterol composition and content showed no clear relationship with pollinator guilds. Our study is the first to show that pollen sterol diversity is phylogenetically clustered and that pollen sterol content may adapt to environmental conditions.


Assuntos
Fitosteróis , Esteróis , Animais , Insetos , Filogenia , Pólen
7.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066978

RESUMO

Bone and muscle are highly synergistic tissues that communicate extensively via mechanotransduction and biochemical signaling. Osteogenesis imperfecta (OI) is a heritable connective tissue disorder of severe bone fragility and recently recognized skeletal muscle weakness. The presence of impaired bone and muscle in OI leads to a continuous cycle of altered muscle-bone crosstalk with weak muscles further compromising bone and vice versa. Currently, there is no cure for OI and understanding the pathogenesis of the skeletal muscle weakness in relation to the bone pathogenesis of OI in light of the critical role of muscle-bone crosstalk is essential to developing and identifying novel therapeutic targets and strategies for OI. This review will highlight how impaired skeletal muscle function contributes to the pathophysiology of OI and how this phenomenon further perpetuates bone fragility.


Assuntos
Osso e Ossos/patologia , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Osteogênese Imperfeita/patologia , Animais , Fenômenos Biomecânicos , Osso e Ossos/fisiopatologia , Metabolismo Energético , Humanos , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/fisiopatologia
8.
Mol Reprod Dev ; 87(9): 927-929, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32869432

RESUMO

Osteogenesis imperfecta (OI), or brittle bone disease, is most often caused by mutations in genes encoding type I collagen or proteins that process it. Women with OI have a small, but significant increase in risk of serious pregnancy complications including uterine rupture. Here, the OI mouse, Col1a2oim/oim , was used to examine the effects of collagen mutation on establishment and maintenance of pregnancy. Picrosirius birefringence was faint in Col1a2oim/oim uteri, indicating diminished collagen in the myometrium and endometrium. There was some evidence of increased uterine gland number (p = .055) and size (p = .12) in (p = .055) virgin uteri, though the they were not significantly different than controls. There were no differences in the number of corpora lutea, or the time from pairing to delivery of pups between Col1a2oim/oim and control dams, suggesting that ovulation and conception occur normally. However, when examined at Gestation Day 6.5 (postimplantation), gestation Day 10.5 (midpregnancy), and Postnatal Days 1-2, Col1a2oim/oim dams had significantly fewer viable pups than controls overall. In pairwise comparisons, the loss was only significant in the postnatal group, suggesting the gradual loss of pups over time. Overall, the Col1a2oim/oim mouse data suggest that OI impairs uterine function in pregnancy in a way that affects a small but significant number of fetuses.


Assuntos
Infertilidade Feminina/etiologia , Osteogênese Imperfeita/complicações , Animais , Colágeno Tipo I/genética , Modelos Animais de Doenças , Feminino , Fertilidade/genética , Viabilidade Fetal/genética , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Tamanho da Ninhada de Vivíparos/genética , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Gravidez , Gravidez de Alto Risco/genética
9.
Proc Natl Acad Sci U S A ; 113(47): 13522-13527, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821779

RESUMO

During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.


Assuntos
Fêmur/fisiopatologia , Miostatina/metabolismo , Osteogênese Imperfeita/fisiopatologia , Animais , Biomarcadores/sangue , Fenômenos Biomecânicos , Peso Corporal , Colágeno/metabolismo , Modelos Animais de Doenças , Implantação do Embrião , Feminino , Fêmur/patologia , Masculino , Camundongos Endogâmicos C57BL , Contração Muscular , Miostatina/deficiência , Osteoblastos/metabolismo , Osteogênese Imperfeita/sangue , Osteogênese Imperfeita/embriologia , Tíbia/patologia , Tíbia/fisiopatologia
10.
Muscle Nerve ; 57(2): 294-304, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28555931

RESUMO

INTRODUCTION: Osteogenesis imperfecta (OI) is characterized by skeletal fragility and muscle weakness. In this study we investigated the effects of soluble activin type IIB receptor (sActRIIB-mFc) on muscle mass and function in 2 distinct mouse models of OI: osteogenesis imperfecta murine (oim) and +/G610C. METHODS: Wild-type (WT), +/G610C, and oim/oim mice were treated from 2 to 4 months of age with Tris-buffered saline (vehicle) or sActRIIB-mFc and their hindlimb muscles evaluated for mass, morphology, and contractile function. RESULTS: sActRIIB-mFc-treated WT, +/G610C, and oim/oim mice had increased hindlimb muscle weights and myofiber cross-sectional area compared with vehicle-treated counterparts. sActRIIB-mFc-treated oim/oim mice also exhibited increased contractile function relative to vehicle-treated counterparts. DISCUSSION: Blocking endogenous ActRIIB was effective at increasing muscle size in mouse models of OI, and increasing contractile function in oim/oim mice. ActRIIB inhibitors may provide a potential mutation-specific therapeutic option for compromised muscle function in OI. Muscle Nerve 57: 294-304, 2018.


Assuntos
Receptores de Activinas Tipo II/genética , Músculo Esquelético/fisiopatologia , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/fisiopatologia , Anatomia Transversal , Animais , Citrato (si)-Sintase/metabolismo , Colágeno Tipo I/genética , Feminino , Membro Posterior/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Contração Muscular , Fibras Musculares Esqueléticas/patologia , Força Muscular , Mutação , Tamanho do Órgão , Osteogênese Imperfeita/patologia
11.
Curr Osteoporos Rep ; 16(4): 478-489, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29909596

RESUMO

PURPOSE OF REVIEW: Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder of skeletal fragility and more recently muscle weakness. This review highlights our current knowledge of the impact of compromised OI muscle function on muscle-bone interactions and skeletal strength in OI. RECENT FINDINGS: The ramifications of inherent muscle weakness in OI muscle-bone interactions are just beginning to be elucidated. Studies in patients and in OI mouse models implicate altered mechanosensing, energy metabolism, mitochondrial dysfunction, and paracrine/endocrine crosstalk in the pathogenesis of OI. Compromised muscle-bone unit impacts mechanosensing and the ability of OI muscle and bone to respond to physiotherapeutic and pharmacologic treatment strategies. Muscle and bone are both compromised in OI, making it essential to understand the mechanisms responsible for both impaired muscle and bone functions and their interdependence, as this will expand and drive new physiotherapeutic and pharmacological approaches to treat OI and other musculoskeletal disorders.


Assuntos
Osso e Ossos/metabolismo , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Osteogênese Imperfeita/metabolismo , Animais , Fenômenos Biomecânicos , Osso e Ossos/fisiopatologia , Comunicação Celular , Metabolismo Energético , Humanos , Mecanotransdução Celular , Mitocôndrias , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Osteogênese Imperfeita/fisiopatologia , Comunicação Parácrina
12.
Am J Pathol ; 185(7): 2000-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987251

RESUMO

Null alleles for the COL5A1 gene and missense mutations for COL5A1 or the COL5A2 gene underlie cases of classic Ehlers-Danlos syndrome, characterized by fragile, hyperextensible skin and hypermobile joints. However, no classic Ehlers-Danlos syndrome case has yet been associated with COL5A2 null alleles, and phenotypes that might result from such alleles are unknown. We describe mice with null alleles for the Col5a2. Col5a2(-/-) homozygosity is embryonic lethal at approximately 12 days post conception. Unlike previously described mice null for Col5a1, which die at 10.5 days post conception and virtually lack collagen fibrils, Col5a2(-/-) embryos have readily detectable collagen fibrils, thicker than in wild-type controls. Differences in Col5a2(-/-) and Col5a1(-/-) fibril formation and embryonic survival suggest that α1(V)3 homotrimers, a rare collagen V isoform that occurs in the absence of sufficient levels of α2(V) chains, serve functional roles that partially compensate for loss of the most common collagen V isoform. Col5a2(+/-) adults have skin with marked hyperextensibility and reduced tensile strength at high strain but not at low strain. Col5a2(+/-) adults also have aortas with increased compliance and reduced tensile strength. Results thus suggest that COL5A2(+/-) humans, although unlikely to present with frank classic Ehlers-Danlos syndrome, are likely to have fragile connective tissues with increased susceptibility to trauma and certain chronic pathologic conditions.


Assuntos
Colágeno Tipo V/genética , Colágeno/genética , Síndrome de Ehlers-Danlos/genética , Adulto , Alelos , Animais , Colágeno/metabolismo , Colágeno Tipo V/metabolismo , Tecido Conjuntivo/anormalidades , Tecido Conjuntivo/patologia , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Pele/patologia
13.
J Antimicrob Chemother ; 69(3): 673-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24176982

RESUMO

OBJECTIVES: We have recently shown that inactivation of any of the multidrug efflux systems of Salmonella results in loss of the ability to form a competent biofilm. The aim of this study was to determine the mechanism linking multidrug efflux and biofilm formation, and to determine whether inhibition of efflux is a viable antibiofilm strategy. METHODS: Mutants lacking components of the AcrAB-TolC system in Salmonella enterica serovar Typhimurium were investigated for their ability to aggregate, produce biofilm matrix components and form a biofilm. The potential for export of a biofilm-relevant substrate via efflux pumps was investigated and expression of genes that regulate multidrug efflux and production of biofilm matrix components was measured. The ability of efflux inhibitors carbonyl cyanide m-chlorophenylhydrazone, chlorpromazine and phenyl-arginine-ß-naphthylamide to prevent biofilm formation by Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus under static and flow conditions was assessed. RESULTS: Mutants of Salmonella Typhimurium that lack TolC or AcrB, but surprisingly not AcrA, were compromised in their ability to form biofilms. This defect was not related to changes in cellular hydrophobicity, aggregative ability or export of any biofilm-specific factor. The biofilm defect resulted from transcriptional repression of curli biosynthesis genes and consequent inhibition of production of curli. All three efflux inhibitors significantly reduced biofilm production in both static and flow biofilm assays, although different concentrations of each inhibitor were most active against each species. CONCLUSIONS: This work shows that both genetic inactivation and chemical inhibition of efflux pumps results in transcriptional repression of biofilm matrix components and a lack of biofilm formation. Therefore, inhibition of efflux is a promising antibiofilm strategy.


Assuntos
Biofilmes/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Biofilmes/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Salmonella typhimurium/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
14.
Blood ; 120(9): 1933-41, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22829629

RESUMO

Transplantation of whole bone marrow (BMT) as well as ex vivo-expanded mesenchymal stromal cells (MSCs) leads to striking clinical benefits in children with osteogenesis imperfecta (OI); however, the underlying mechanism of these cell therapies has not been elucidated. Here, we show that non-(plastic)-adherent bone marrow cells (NABMCs) are more potent osteoprogenitors than MSCs in mice. Translating these findings to the clinic, a T cell-depleted marrow mononuclear cell boost (> 99.99% NABMC) given to children with OI who had previously undergone BMT resulted in marked growth acceleration in a subset of patients, unambiguously indicating the therapeutic potential of bone marrow cells for these patients. Then, in a murine model of OI, we demonstrated that as the donor NABMCs differentiate to osteoblasts, they contribute normal collagen to the bone matrix. In contrast, MSCs do not substantially engraft in bone, but secrete a soluble mediator that indirectly stimulates growth, data which provide the underlying mechanism of our prior clinical trial of MSC therapy for children with OI. Collectively, our data indicate that both NABMCs and MSCs constitute effective cell therapy for OI, but exert their clinical impact by different, complementary mechanisms. The study is registered at www.clinicaltrials.gov as NCT00187018.


Assuntos
Transplante de Medula Óssea/métodos , Leucócitos Mononucleares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Osteogênese Imperfeita/cirurgia , Animais , Estatura/fisiologia , Peso Corporal/fisiologia , Matriz Óssea/metabolismo , Células Cultivadas , Criança , Colágeno/genética , Colágeno/metabolismo , Feminino , Citometria de Fluxo , Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Vértebras Lombares/crescimento & desenvolvimento , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/fisiopatologia , Fatores de Tempo
15.
Biomed Pharmacother ; 175: 116725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744219

RESUMO

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.


Assuntos
Colágeno Tipo I , Regulação para Baixo , Células-Tronco Mesenquimais , Osteogênese Imperfeita , Osteogênese , Pirazóis , Quinolinas , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Animais , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Feminino , Quinolinas/farmacologia , Camundongos , Criança , Pirazóis/farmacologia , Masculino , Diferenciação Celular/efeitos dos fármacos , Mutação , Modelos Animais de Doenças , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Pré-Escolar , Células Cultivadas , Fator de Crescimento Transformador beta/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Evolution ; 77(7): 1730-1731, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37158004

RESUMO

How have orchid species diversified in the campos rupestres, Brazil? Fiorini et al. (2023) use genomic data sets and multidisciplinary approaches, including phylogenetics and population genomics, to investigate the diversity of Bulbophyllum. They demonstrate that geographic isolation alone does not explain diversification patterns in Bulbophyllum species throughout the sky forests. Some taxa show considerable evidence of gene flow, and lineages not previously identified as closely related could present a novel source of their genetic diversity.


Assuntos
Florestas , Genômica , Filogenia , Brasil
17.
Metabolites ; 13(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367877

RESUMO

Myostatin (gene symbol: Mstn) is an autocrine and paracrine inhibitor of muscle growth. Pregnant mice with genetically reduced levels of myostatin give birth to offspring with greater adult muscle mass and bone biomechanical strength. However, maternal myostatin is not detectable in fetal circulations. Fetal growth is dependent on the maternal environment, and the provisioning of nutrients and growth factors by the placenta. Thus, this study examined the effect of reduced maternal myostatin on maternal and fetal serum metabolomes, as well as the placental metabolome. Fetal and maternal serum metabolomes were highly distinct, which is consistent with the role of the placenta in creating a specific fetal nutrient environment. There was no effect from myostatin on maternal glucose tolerance or fasting insulin. In comparisons between pregnant control and Mstn+/- mice, there were more significantly different metabolite concentrations in fetal serum, at 50, than in the mother's serum at 33, confirming the effect of maternal myostatin reduction on the fetal metabolic milieu. Polyamines, lysophospholipids, fatty acid oxidation, and vitamin C, in fetal serum, were all affected by maternal myostatin reduction.

18.
JBMR Plus ; 7(7): e10753, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37457877

RESUMO

Mutations in the COL1A1 and COL1A2 genes, which encode type I collagen, are present in around 85%-90% of osteogenesis imperfecta (OI) patients. Because type I collagen is the principal protein composition of bones, any changes in its gene sequences or synthesis can severely affect bone structure. As a result, skeletal deformity and bone frailty are defining characteristics of OI. Homozygous oim/oim mice are utilized as models of severe progressive type III OI. Bone adapts to external forces by altering its mass and architecture. Previous attempts to leverage the relationship between muscle and bone involved using a soluble activin receptor type IIB-mFc (sActRIIB-mFc) fusion protein to lower circulating concentrations of activin A and myostatin. These two proteins are part of the TGF-ß superfamily that regulate muscle and bone function. While this approach resulted in increased muscle masses and enhanced bone properties, adverse effects emerged due to ligand promiscuity, limiting clinical efficacy and obscuring the precise contributions of myostatin and activin A. In this study, we investigated the musculoskeletal and whole-body metabolism effect of treating 5-week-old wildtype (Wt) and oim/oim mice for 11 weeks with either control antibody (Ctrl-Ab) or monoclonal anti-activin A antibody (ActA-Ab), anti-myostatin antibody (Mstn-Ab), or a combination of ActA-Ab and Mstn-Ab (Combo). We demonstrated that ActA-Ab treatment minimally impacts muscle mass in oim/oim mice, whereas Mstn-Ab and Combo treatments substantially increased muscle mass and overall lean mass regardless of genotype and sex. Further, while no improvements in cortical bone microarchitecture were observed with all treatments, minimal improvements in trabecular bone microarchitecture were observed with the Combo treatment in oim/oim mice. Our findings suggest that individual or combinatorial inhibition of myostatin and activin A alone is insufficient to robustly improve femoral biomechanical and microarchitectural properties in severely affected OI mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

19.
Biol Reprod ; 86(3): 69, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22088916

RESUMO

Developmental exposure to high doses of the synthetic xenoestrogen diethylstilbestrol (DES) has been reported to alter femur length and strength in adult mice. However, it is not known if developmental exposure to low, environmentally relevant doses of xenoestrogens alters adult bone geometry and strength. In this study we investigated the effects of developmental exposure to low doses of DES, bisphenol A (BPA), or ethinyl estradiol (EE(2)) on bone geometry and torsional strength. C57BL/6 mice were exposed to DES, 0.1 µg/kg/day, BPA, 10 µg/kg/day, EE(2), 0.01, 0.1, or 1.0 µg/kg/day, or vehicle from Gestation Day 11 to Postnatal Day 12 via a mini-osmotic pump in the dam. Developmental Xenoestrogen exposure altered femoral geometry and strength, assessed in adulthood by micro-computed tomography and torsional strength analysis, respectively. Low-dose EE(2), DES, or BPA increased adult femur length. Exposure to the highest dose of EE(2) did not alter femur length, resulting in a nonmonotonic dose response. Exposure to EE(2) and DES but not BPA decreased tensile strength. The combined effect of increased femur length and decreased tensile strength resulted in a trend toward decreased torsional ultimate strength and energy to failure. Taken together, these results suggest that exposure to developmental exposure to environmentally relevant levels of xenoestrogens may negatively impact bone length and strength in adulthood.


Assuntos
Dietilestilbestrol/farmacologia , Etinilestradiol/farmacologia , Fêmur/anatomia & histologia , Fêmur/embriologia , Desenvolvimento Fetal/efeitos dos fármacos , Fenóis/farmacologia , Resistência à Tração/efeitos dos fármacos , Administração Oral , Animais , Compostos Benzidrílicos , Fenômenos Biomecânicos , Colágeno/metabolismo , Dietilestilbestrol/administração & dosagem , Relação Dose-Resposta a Droga , Etinilestradiol/administração & dosagem , Feminino , Fêmur/efeitos dos fármacos , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fenóis/administração & dosagem , Gravidez
20.
J Bone Miner Res ; 37(5): 938-953, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35195284

RESUMO

Osteogenesis imperfecta (OI) is a collagen-related bone disorder characterized by fragile osteopenic bone and muscle weakness. We have previously shown that the soluble activin receptor type IIB decoy (sActRIIB) molecule increases muscle mass and improves bone strength in the mild to moderate G610C mouse model of OI. The sActRIIB molecule binds multiple transforming growth factor-ß (TGF-ß) ligands, including myostatin and activin A. Here, we investigate the musculoskeletal effects of inhibiting activin A alone, myostatin alone, or both myostatin and activin A in wild-type (Wt) and heterozygous G610C (+/G610C) mice using specific monoclonal antibodies. Male and female Wt and +/G610C mice were treated twice weekly with intraperitoneal injections of monoclonal control antibody (Ctrl-Ab, Regn1945), anti-activin A antibody (ActA-Ab, Regn2476), anti-myostatin antibody (Mstn-Ab, Regn647), or both ActA-Ab and Mstn-Ab (Combo, Regn2476, and Regn647) from 5 to 16 weeks of age. Prior to euthanasia, whole body composition, metabolism and muscle force generation assessments were performed. Post euthanasia, hindlimb muscles were evaluated for mass, and femurs were evaluated for changes in microarchitecture and biomechanical strength using micro-computed tomography (µCT) and three-point bend analyses. ActA-Ab treatment minimally impacted the +/G610C musculoskeleton, and was detrimental to bone strength in male +/G610C mice. Mstn-Ab treatment, as previously reported, resulted in substantial increases in hindlimb muscle weights and overall body weights in Wt and male +/G610C mice, but had minimal skeletal impact in +/G610C mice. Conversely, the Combo treatment outperformed ActA-Ab alone or Mstn-Ab alone, consistently increasing hindlimb muscle and body weights regardless of sex or genotype and improving bone microarchitecture and strength in both male and female +/G610C and Wt mice. Combinatorial inhibition of activin A and myostatin more potently increased muscle mass and bone microarchitecture and strength than either antibody alone, recapturing most of the observed benefits of sActRIIB treatment in +/G610C mice. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteogênese Imperfeita , Ativinas , Animais , Peso Corporal , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Masculino , Camundongos , Miostatina/genética , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA