Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(12): e2114545119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286203

RESUMO

Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and adult offspring have been well characterized; however, less is known about the effects of MIA exposure on embryo development. To address this gap, we performed high-resolution ex vivo MRI to investigate the effects of early (gestational day [GD]9) and late (GD17) MIA exposure on embryo (GD18) brain structure. We identify striking neuroanatomical changes in the embryo brain, particularly in the late-exposed offspring. We further examined the putative neuroanatomical underpinnings of MIA timing in the hippocampus using electron microscopy and identified differential effects due to MIA timing. An increase in apoptotic cell density was observed in the GD9-exposed offspring, while an increase in the density of neurons and glia with ultrastructural features reflective of increased neuroinflammation and oxidative stress was observed in GD17-exposed offspring, particularly in females. Overall, our findings integrate imaging techniques across different scales to identify differential impact of MIA timing on the earliest stages of neurodevelopment.


Assuntos
Transtorno do Espectro Autista , Sistema Imunitário , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Adolescente , Animais , Encéfalo , Modelos Animais de Doenças , Feminino , Humanos , Sistema Imunitário/fisiologia , Inflamação , Imageamento por Ressonância Magnética , Camundongos , Gravidez
2.
Brain Behav Immun ; 116: 126-139, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016491

RESUMO

INTRODUCTION: A wide range of positive, negative, and cognitive symptoms compose the clinical presentation of schizophrenia. Schizophrenia is a multifactorial disorder in which genetic and environmental risk factors interact for a full emergence of the disorder. Infectious challenges during pregnancy are a well-known environmental risk factor for schizophrenia. Also, genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia. Translational animal models recapitulating these complex gene-environment associations have a great potential to untangle schizophrenia neurobiology and propose new therapeutic strategies. METHODS: Given that genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia, we compared the outcomes of a well-characterized model of maternal immune activation induced using the viral mimetic polyinosinic:polycytidylic acid (Poly I:C) in wild-type versus fractalkine receptor knockout mice. Possible behavioral and immune alterations were assessed in male and female offspring during adulthood. Considering the role of the hippocampus in schizophrenia, microglial analyses and bulk RNA sequencing were performed within this region to assess the neuroimmune dynamics at play. Males and females were examined separately. RESULTS: Offspring exposed to the dual challenge paradigm exhibited symptoms relevant to schizophrenia and unpredictably to mood disorders. Males displayed social and cognitive deficits related to schizophrenia, while females mainly presented anxiety-like behaviors related to mood disorders. Hippocampal microglia in females exposed to the dual challenge were hypertrophic, indicative of an increased surveillance, whereas those in males showed on the other end of the spectrum blunted morphologies with a reduced phagocytosis. Hippocampal bulk-RNA sequencing further revealed a downregulation in females of genes related to GABAergic transmission, which represents one of the main proposed causes of mood disorders. CONCLUSIONS: Building on previous results, we identified in the current study distinctive behavioral phenotypes in female mice exposed to a dual genetic and environmental challenge, thus proposing a new model of neurodevelopmentally-associated mood and affective symptoms. This paves the way to future sex-specific investigations into the susceptibility to developmental challenges using animal models based on genetic and immune vulnerability as presented here.


Assuntos
Microglia , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Camundongos , Feminino , Masculino , Animais , Quimiocina CX3CL1 , Poli I-C/farmacologia , Comportamento Animal/fisiologia , Perfilação da Expressão Gênica , Hipocampo , Modelos Animais de Doenças
3.
Brain Behav Immun ; 107: 153-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202169

RESUMO

Sleep is a natural physiological state, tightly regulated through several neuroanatomical and neurochemical systems, which is essential to maintain physical and mental health. Recent studies revealed that the functions of microglia, the resident immune cells of the brain, differ along the sleep-wake cycle. Inflammatory cytokines, such as interleukin-1ß and tumor necrosis factor-α, mainly produced by microglia in the brain, are also well-known to promote sleep. However, the contributing role of microglia on sleep regulation remains largely elusive, even more so in females. Given the higher prevalence of various sleep disorders in women, we aimed to determine the role of microglia in regulating the sleep-wake cycle specifically in female mice. Microglia were depleted in adult female mice with inhibitors of the colony-stimulating factor 1 receptor (CSF1R) (PLX3397 or PLX5622), which is required for microglial population maintenance. This led to a 65-73% reduction of the microglial population, as confirmed by immunofluorescence staining against IBA1 (marker of microglia/macrophages) and TMEM119 (microglia-specific marker) in the reticular nucleus of the thalamus and primary motor cortex. The spontaneous sleep-wake cycle was evaluated at steady-state, during microglial homeostasis disruption and after complete microglial repopulation, upon cessation of treatment with the inhibitors of CSF1R, using electroencephalography (EEG) and electromyography (EMG). We found that microglia-depleted female mice spent more time in non-rapid eye movement (NREM) sleep and had an increased number of NREM sleep episodes, which was partially restored after microglial total repopulation. To determine whether microglia could regulate sleep locally by modulating synaptic transmission, we used patch clamp to record spontaneous activity of pyramidal neurons in the primary motor cortex, which showed an increase of excitatory synaptic transmission during the dark phase. These changes in neuronal activity were modulated by microglial depletion in a phase-dependent manner. Altogether, our results indicate that microglia are involved in the sleep regulation of female mice, further strengthening their potential implication in the development and/or progression of sleep disorders. Furthermore, our findings indicate that microglial repopulation can contribute to normalizing sleep alterations caused by their partial depletion.


Assuntos
Movimentos Oculares , Transtornos do Sono-Vigília , Feminino , Animais , Camundongos , Duração do Sono , Fator de Necrose Tumoral alfa
4.
Brain Behav Immun ; 114: 383-406, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689276

RESUMO

Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.


Assuntos
Transtorno Depressivo Maior , Dieta Cetogênica , Camundongos , Masculino , Animais , Microglia/metabolismo , Comportamento Social , Derrota Social , Transtorno Depressivo Maior/metabolismo , Lipidômica , Hipocampo , Inflamação/metabolismo , Estresse Psicológico/metabolismo , Camundongos Endogâmicos C57BL
5.
Glia ; 70(1): 89-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487590

RESUMO

Microglia, the brain's resident macrophages, actively contribute to the homeostasis of cerebral parenchyma by sensing neuronal activity and supporting synaptic remodeling and plasticity. While several studies demonstrated different roles for astrocytes in sleep, the contribution of microglia in the regulation of sleep/wake cycle and in the modulation of synaptic activity in the different day phases has not been deeply investigated. Using light as a zeitgeber cue, we studied the effects of microglial depletion with the colony stimulating factor-1 receptor antagonist PLX5622 on the sleep/wake cycle and on hippocampal synaptic transmission in male mice. Our data demonstrate that almost complete microglial depletion increases the duration of NREM sleep and reduces the hippocampal excitatory neurotransmission. The fractalkine receptor CX3CR1 plays a relevant role in these effects, because cx3cr1GFP/GFP mice recapitulate what found in PLX5622-treated mice. Furthermore, during the light phase, microglia express lower levels of cx3cr1 and a reduction of cx3cr1 expression is also observed when cultured microglial cells are stimulated by ATP, a purinergic molecule released during sleep. Our findings suggest that microglia participate in the regulation of sleep, adapting their cx3cr1 expression in response to the light/dark phase, and modulating synaptic activity in a phase-dependent manner.


Assuntos
Microglia , Transmissão Sináptica , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , Sono
6.
Brain Behav Immun ; 98: 122-135, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403733

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disability in the world. Currently, there are no therapeutics for treating the deleterious consequences of brain trauma; this is in part due to a lack of complete understanding of cellular processes that underlie TBI-related pathologies. Following TBI, microglia, the brain resident immune cells, turn into a "reactive" state characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Utilizing multimodal, state-of-the-art techniques that widely span from ultrastructural analysis to optogenetic interrogation of circuit function, we investigated the reactive microglia phenotype one week after injury when learning and memory deficits are also measured. Microglia displayed increased: (i) phagocytic activity in vivo, (ii) synaptic engulfment, (iii) increased neuronal contact, including with dendrites and somata (termed 'satellite microglia'). Functionally, satellite microglia might impact somatic inhibition as demonstrated by the associated reduction in inhibitory synaptic drive. Cumulatively, here we demonstrate novel microglia-mediated mechanisms that may contribute to synaptic loss and cognitive impairment after traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Animais , Encéfalo , Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia
7.
Brain Behav Immun ; 97: 423-439, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343616

RESUMO

Chronic psychological stress is one of the most important triggers and environmental risk factors for neuropsychiatric disorders. Chronic stress can influence all organs via the secretion of stress hormones, including glucocorticoids by the adrenal glands, which coordinate the stress response across the body. In the brain, glucocorticoid receptors (GR) are expressed by various cell types including microglia, which are its resident immune cells regulating stress-induced inflammatory processes. To study the roles of microglial GR under normal homeostatic conditions and following chronic stress, we generated a mouse model in which the GR gene is depleted in microglia specifically at adulthood to prevent developmental confounds. We first confirmed that microglia were depleted in GR in our model in males and females among the cingulate cortex and the hippocampus, both stress-sensitive brain regions. Then, cohorts of microglial-GR depleted and wild-type (WT) adult female mice were housed for 3 weeks in a standard or stressful condition, using a chronic unpredictable mild stress (CUMS) paradigm. CUMS induced stress-related behavior in both microglial-GR depleted and WT animals as demonstrated by a decrease of both saccharine preference and progressive ratio breakpoint. Nevertheless, the hippocampal microglial and neural mechanisms underlying the adaptation to stress occurred differently between the two genotypes. Upon CUMS exposure, microglial morphology was altered in the WT controls, without any apparent effect in microglial-GR depleted mice. Furthermore, in the standard environment condition, GR depleted-microglia showed increased expression of pro-inflammatory genes, and genes involved in microglial homeostatic functions (such as Trem2, Cx3cr1 and Mertk). On the contrary, in CUMS condition, GR depleted-microglia showed reduced expression levels of pro-inflammatory genes and increased neuroprotective as well as anti-inflammatory genes compared to WT-microglia. Moreover, in microglial-GR depleted mice, but not in WT mice, CUMS led to a significant reduction of CA1 long-term potentiation and paired-pulse ratio. Lastly, differences in adult hippocampal neurogenesis were observed between the genotypes during normal homeostatic conditions, with microglial-GR deficiency increasing the formation of newborn neurons in the dentate gyrus subgranular zone independently from stress exposure. Together, these findings indicate that, although the deletion of microglial GR did not prevent the animal's ability to respond to stress, it contributed to modulating hippocampal functions in both standard and stressful conditions, notably by shaping the microglial response to chronic stress.


Assuntos
Microglia , Receptores de Glucocorticoides , Animais , Feminino , Hipocampo/metabolismo , Masculino , Glicoproteínas de Membrana , Camundongos , Microglia/metabolismo , Neurogênese , Neurônios/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores Imunológicos , Estresse Psicológico
8.
Brain Behav Immun ; 90: 81-96, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755645

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative motor disorder. The mechanisms underlying the onset and progression of Levodopa (L-Dopa)-induced dyskinesia (LID) during PD treatment remain elusive. Emerging evidence implicates functional modification of microglia in the development of LID. Thus, understanding the link between microglia and the development of LID may provide the knowledge required to preserve or promote beneficial microglial functions, even during a prolonged L-Dopa treatment. To provide novel insights into microglial functional alterations in PD pathophysiology, we characterized their density, morphology, ultrastructure, and degradation activity in the sensorimotor functional territory of the putamen, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cynomolgus monkeys. A subset of MPTP monkeys was treated orally with L-Dopa and developed LID similar to PD patients. Using a combination of light, confocal and transmission electron microscopy, our quantitative analyses revealed alterations of microglial density, morphology and phagolysosomal activity following MPTP intoxication that were partially normalized with L-Dopa treatment. In particular, microglial density, cell body and arborization areas were increased in the MPTP monkeys, whereas L-Dopa-treated MPTP animals presented a microglial phenotype similar to the control animals. At the ultrastructural level, microglia did not differ between groups in their markers of cellular stress or aging. Nevertheless, microglia from the MPTP monkeys displayed reduced numbers of endosomes, compared with control animals, that remained lower after L-Dopa treatment. Microglia from MPTP monkeys treated with L-Dopa also had increased numbers of primary lysosomes compared with non-treated MPTP animals, while secondary and tertiary lysosomes remained unchanged. Moreover, a decrease microglial immunoreactivity for CD68, considered a marker of phagocytosis and lysosomal activity, was measured in the MPTP monkeys treated with L-Dopa, compared with non-treated MPTP animals. Taken together, these findings revealed significant changes in microglia during PD pathophysiology that were partially rescued by L-Dopa treatment. Albeit, this L-Dopa treatment conferred phagolysosomal insufficiency on microglia in the dyskinetic Parkinsonian monkeys.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Humanos , Levodopa , Macaca fascicularis , Microglia , Doença de Parkinson/tratamento farmacológico
9.
Adv Neurobiol ; 37: 357-377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39207702

RESUMO

Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.


Assuntos
Microglia , Transtornos do Sono-Vigília , Humanos , Microglia/metabolismo , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/fisiopatologia , Transtornos do Sono-Vigília/epidemiologia , Animais , Doença de Alzheimer/metabolismo , Privação do Sono/metabolismo , Doença de Parkinson , Narcolepsia/fisiopatologia , Narcolepsia/imunologia , Narcolepsia/metabolismo , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Síndromes da Apneia do Sono/epidemiologia , Síndromes da Apneia do Sono/fisiopatologia
10.
iScience ; 27(7): 110037, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021809

RESUMO

Although the roles of embryonic yolk sac-derived, resident microglia in neurodevelopment were extensively studied, the possible involvement of bone marrow-derived cells remains elusive. In this work, we used a fate-mapping strategy to selectively label bone marrow-derived cells and their progeny in the brain (FLT3+IBA1+). FLT3+IBA1+ cells were confirmed to be transiently present in the healthy brain during early postnatal development. FLT3+IBA1+ cells have a distinct morphology index at postnatal day(P)0, P7, and P14 compared with neighboring microglia. FLT3+IBA1+ cells also express the microglial markers P2RY12 and TMEM119 and interact with VGLUT1 synapses at P14. Scanning electron microscopy indeed showed that FLT3+ cells contact and engulf pre-synaptic elements. Our findings suggest FLT3+IBA1+ cells might assist microglia in their physiological functions in the developing brain including synaptic pruning which is performed using their purinergic sensors. Our findings stimulate further investigation on the involvement of peripheral macrophages during homeostatic and pathological development.

11.
bioRxiv ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39345569

RESUMO

Rodent drug self-administration leads to compromised ability of astrocytes to maintain glutamate homeostasis within the brain's reward circuitry, as well as reductions in surface area, volume, and synaptic colocalization of astrocyte membranes. However, the mechanisms driving astrocyte responses to cocaine are unknown. Here, we report that long-access cocaine self-administration followed by prolonged home cage abstinence results in decreased branching complexity of nucleus accumbens astrocytes, characterized by the loss of peripheral processes. Using a combination of confocal fluorescence microcopy and immuno-gold electron microscopy, we show that alterations in astrocyte structural features are driven by microglia phagocytosis, as labeled astrocyte membranes are found within microglia phagolysosomes. Inhibition of complement C3-mediated phagocytosis using the neutrophil inhibitory peptide (NIF) rescued astrocyte structure and decreased cocaine seeking behavior following cocaine self-administration and abstinence. Collectively, these results provide evidence for microglia pruning of accumbens astrocytes across cocaine abstinence which mediates cocaine craving.

12.
bioRxiv ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39463930

RESUMO

This study examined dark microglia-a state linked to central nervous system pathology and neurodegeneration-during postnatal development in the mouse ventral hippocampus, finding that dark microglia interact with blood vessels and synapses and perform trogocytosis of pre-synaptic axon terminals. Furthermore, we found that dark microglia in development notably expressed C-type lectin domain family 7 member A (CLEC7a), lipoprotein lipase (LPL) and triggering receptor expressed on myeloid cells 2 (TREM2) and required TREM2, differently from other microglia, suggesting a link between their role in remodeling during development and central nervous system pathology. Together, these results point towards a previously under-appreciated role for dark microglia in synaptic pruning and plasticity during normal postnatal development.

13.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693370

RESUMO

Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.

14.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169859

RESUMO

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Assuntos
Arginase , Microglia , Animais , Feminino , Camundongos , Arginase/genética , Arginase/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo
15.
Front Cell Neurosci ; 16: 802411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221920

RESUMO

Over the last century, westernization of dietary habits has led to a dramatic reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). In particular, low maternal intake of n-3 PUFAs throughout gestation and lactation causes defects in brain myelination. Microglia are recognized for their critical contribution to neurodevelopmental processes, such as myelination. These cells invade the white matter in the first weeks of the post-natal period, where they participate in oligodendrocyte maturation and myelin production. Therefore, we investigated whether an alteration of white matter microglia accompanies the myelination deficits observed in the brain of n-3 PUFA-deficient animals. Macroscopic imaging analysis shows that maternal n-3 PUFA deficiency decreases the density of white matter microglia around post-natal day 10. Microscopic electron microscopy analyses also revealed alterations of microglial ultrastructure, a decrease in the number of contacts between microglia and myelin sheet, and a decreased amount of myelin debris in their cell body. White matter microglia further displayed increased mitochondrial abundance and network area under perinatal n-3 PUFA deficiency. Overall, our data suggest that maternal n-3 PUFA deficiency alters the structure and function of microglial cells located in the white matter of pups early in life, and this could be the key to understand myelination deficits during neurodevelopment.

16.
Micron ; 161: 103334, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970079

RESUMO

Microglia, the immune resident cells of the central nervous system (CNS), are now recognized as performing crucial roles for maintaining homeostasis and determining the outcomes of various pathological challenges across life. While brightfield microscopy is a powerful and established tool to study microglia-mediated mechanisms underlying neurological diseases, microglial density and distribution are some of the most frequently investigated parameters. Their quantitative assessment provides relevant clues regarding dynamic densitometric changes in the microglial population across various CNS regions. Investigators often rely on a manual identification and analysis of these cells within key regions of interest, which can be time-consuming and introduce an experimenter bias. Automation of this process, which has been gaining popularity in recent years, represents a potential solution to minimize both experimenter's bias and time investment, thus increasing the efficacy of the experiment and uniformity of the collected data. We aimed to compare manual versus automatic analysis methods to determine whether an automatic analysis is efficient and accurate enough to replace a manual analysis in both homeostatic and pathological contexts (i.e., adult healthy and lipopolysaccharide-challenged adolescent male mice, respectively). To do so, we used a script that runs on the ImageJ software to perform microglial density analysis by automatic detection of microglial cells from brightfield microscopy images. The main core of the macro script consists in an automatic cell selection step using a threshold followed by a spatial analysis for each selected cell. The resulting data were then compared with the values obtained using a well-established manual method. Overall, the evaluation of the established automatic densitometry method with manual density and distribution analysis revealed similar results for the density and nearest neighbor distance in healthy adult mice, as well as density and distribution in lipopolysaccharide-challenged adolescent mice. Applying machine learning to the automatic process could further improve the accuracy and robustness of the method.


Assuntos
Lipopolissacarídeos , Microglia , Animais , Camundongos , Masculino , Microglia/patologia , Hipocampo , Software , Automação
17.
Neurochem Int ; 145: 104987, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587954

RESUMO

Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.


Assuntos
Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Sistemas Neurossecretores/metabolismo , Estresse Psicológico/metabolismo , Animais , Doença Crônica , Corticosterona/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Microglia/patologia , Doenças Neurodegenerativas/patologia , Sistemas Neurossecretores/patologia , Norepinefrina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Psicológico/patologia
18.
Cannabis Cannabinoid Res ; 6(6): 488-507, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591647

RESUMO

Background: Neuroinflammation is a key feature shared by most, if not all, neuropathologies. It involves complex biological processes that act as a protective mechanism to fight against the injurious stimuli, but it can lead to tissue damage if self-perpetuating. In this context, microglia, the main cellular actor of neuroinflammation in the brain, are seen as a double-edged sword. By phagocyting neuronal debris, these cells can not only provide tissue repair but can also contribute to neuronal damage by releasing harmful substances, including inflammatory cytokines. The mechanisms guiding these apparent opposing actions are poorly known. The endocannabinoid system modulates the release of inflammatory factors such as cytokines and could represent a functional link between microglia and neuroinflammatory processes. According to transcriptomic databases and in vitro studies, microglia, the main source of cytokines in pathological conditions, express the cannabinoid type 1 receptor (CB1R). Methods: We thus developed a conditional mouse model of CB1R deletion specifically in microglia, which was subjected to an immune challenge (peripheral lipopolysaccharide injection). Results: Our results reveal that microglial CB1R differentially controls sickness behavior in males and females. Conclusion: These findings add to the comprehension of neuroinflammatory processes and might be of great interest for future studies aimed at developing therapeutic strategies for brain disorders with higher prevalence in men.


Assuntos
Canabinoides , Encefalite , Animais , Masculino , Camundongos , Microglia , Doenças Neuroinflamatórias , Receptores de Canabinoides/genética
19.
Compr Physiol ; 10(2): 687-712, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32163207

RESUMO

Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.


Assuntos
Astrócitos/fisiologia , Microglia/fisiologia , Doenças Neurodegenerativas/patologia , Neurônios/fisiologia , Transtornos do Sono-Vigília/patologia , Sono/fisiologia , Animais , Astrócitos/citologia , Humanos , Microglia/citologia , Microglia/patologia , Doenças Neurodegenerativas/etiologia , Neurônios/citologia
20.
Mol Neurobiol ; 56(9): 6521-6538, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30852795

RESUMO

Stroke induces blood-brain barrier (BBB) breakdown, which promotes complications like oedema and hemorrhagic transformation. Administration of recombinant tissue plasminogen activator (rtPA) within a therapeutic time window of 4.5 h after stroke onset constitutes the only existing treatment. Beyond this time window, rtPA worsens BBB breakdown. Canonical Wnt pathway induces BBB formation and maturation during ontogeny. We hypothesized that the pathway is required to maintain BBB functions after stroke; thus, its activation might improve rtPA therapy. Therefore, we first assessed pathway activity in the brain of mice subjected to transient middle cerebral artery occlusion (MCAo). Next, we evaluated the effect of pathway deactivation early after stroke onset on BBB functions. Finally, we assessed the impact of pathway activation on BBB breakdown associated to delayed administration of rtPA. Our results show that pathway activity is induced predominately in endothelial cells early after ischemic stroke. Early deactivation of the pathway using a potent inhibitor, XAV939, aggravates BBB breakdown and increases hemorrhagic transformation incidence. On the other hand, pathway activation using a potent activator, 6-bromoindirubin-3'-oxime (6-BIO), reduces the incidence of hemorrhagic transformation associated to delayed rtPA administration by attenuating BBB breakdown via promotion of tight junction formation and repressing endothelial basal permeability independently of rtPA proteolytic activity. BBB preservation upon pathway activation limited the deleterious effects of delayed rtPA administration. Our study demonstrates that activation of the canonical Wnt pathway constitutes a clinically relevant strategy to extend the therapeutic time window of rtPA by attenuating BBB breakdown via regulation of BBB-specific mechanisms.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/uso terapêutico , Via de Sinalização Wnt , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/ultraestrutura , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Glucose/deficiência , Indóis , Inflamação/patologia , Camundongos Endogâmicos C57BL , Microvasos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Oximas , Oxigênio , Permeabilidade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA