Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 236: 113442, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367877

RESUMO

The development of nanotechnologies is leading to greater abundance of engineered nanoparticles (EN) in the environment, including in the atmospheric air. To date, it has been shown that the most prevalent EN found in the air are silver (Ag), titanium dioxide (TiO2), titanium (Ti), and silicon dioxide (SiO2). As the intestinal tract is increasingly recognized as a target for adverse effects induced by inhalation of air particles, the aim of this study was to assess the impact of these 4 atmospheric EN on intestinal inflammation and microbiota. We assessed the combined toxicity effects of Ag, Ti, TiO2, and SiO2 following a 28-day inhalation protocol in male and female mice. In distal and proximal colon, and in jejunum, EN mixture inhalation did not induce overt histological damage, but led to a significant modulation of inflammatory cytokine transcript abundance, including downregulation of Tnfα, Ifnγ, Il1ß, Il17a, Il22, IL10, and Cxcl1 mRNA levels in male jejunum. A dysbiosis was observed in cecal microbiota of male and female mice exposed to the EN mixture, characterized by sex-dependent modulations of specific bacterial taxa, as well as sex-independent decreased abundance of the Eggerthellaceae family. Under dextran sodium sulfate-induced inflammatory conditions, exposure to the EN mixture increased the development of colitis in both male and female mice. Moreover, the direct dose-response effects of individual and mixed EN on gut organoids was studied and Ag, TiO2, Ti, SiO2, and EN mixture were found to generate specific inflammatory responses in the intestinal epithelium. These results indicate that the 4 most prevalent atmospheric EN could have the ability to disturb intestinal homeostasis through direct modulation of cytokine expression in gut epithelium, and by altering the inflammatory response and microbiota composition following inhalation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Nanopartículas , Animais , Citocinas/genética , Feminino , Masculino , Camundongos , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Titânio/toxicidade
2.
Environ Res ; 195: 110850, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577771

RESUMO

Patients with chronic obstructive pulmonary disease (COPD) are frequently colonised or sensitised by Aspergillus, but clinical significance remains unclear. Furthermore, little is known on the impact of indoor mould exposure during COPD. In this study, we assessed the relationship between domestic mould exposure, Aspergillus biomarkers and COPD severity during acute exacerbation and at stable state. Aspergillus section Fumigati culture in sputum and anti-Aspergillus antibodies detection (IgG and precipitins) were followed up in COPD patients that were prospectively recruited during exacerbation (n = 62), and underwent a visit at stable state after 18 months (n = 33). Clinical characteristics were collected at inclusion. Electrostatic dust collectors (EDCs) were used to measure domestic mould contamination. Aspergillus section Fumigati was more frequently detected during exacerbation (16.9%) than at stable state (4.0%), but the frequency of patients presenting with anti-Aspergillus antibodies was similar (32.2% and 33.3%, respectively). Aspergillus section Fumigati detection was associated with a higher body-mass index (BMI) during exacerbation, whereas patients with anti-Aspergillus antibodies presented a lower BMI and forced expiratory volume in 1 s, as well as a higher frequency of inhaled corticoids and higher total mould and Penicillium exposure at final visit (P < 0.05). The frequency of patients with anti-Aspergillus antibodies was higher for total mould counts >30 CFU/cm2 (P = 0.03). Aspergillosis was diagnosed in 2 patients (6.1%) who presented increased levels of antibodies. Our data suggest that anti-Aspergillus antibodies are associated with chronic lung function alteration and/or domestic mould exposure, thereby supporting the consideration of indoor mould contamination and anti-Aspergillus antibodies kinetics in COPD management.


Assuntos
Aspergilose , Doença Pulmonar Obstrutiva Crônica , Aspergillus , Biomarcadores , Volume Expiratório Forçado , Humanos , Pulmão
3.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008535

RESUMO

Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.


Assuntos
Consumo de Oxigênio/fisiologia , Envelhecimento/fisiologia , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Respiração Celular/fisiologia , Metabolismo Energético/fisiologia , Coração/fisiologia , Humanos , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Ratos , Testes de Função Respiratória/métodos
4.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806630

RESUMO

While thiol-based catalysts are widely employed for chemical protein synthesis relying on peptide thioester chemistry, this is less true for selenol-based catalysts whose development is in its infancy. In this study, we compared different selenols derived from the selenocysteamine scaffold for their capacity to promote thiol-thioester exchanges in water at mildly acidic pH and the production of peptide thioesters from bis(2-sulfanylethyl)amido (SEA) peptides. The usefulness of a selected selenol compound is illustrated by the total synthesis of a biologically active human chemotactic protein, which plays an important role in innate and adaptive immunity.


Assuntos
Fatores Quimiotáticos/metabolismo , Quimiotaxia , Ésteres/síntese química , Compostos Organosselênicos/química , Fragmentos de Peptídeos/química , Biossíntese de Proteínas , Compostos de Sulfidrila/química , Catálise , Técnicas de Química Sintética , Humanos , Monócitos/citologia , Monócitos/fisiologia
5.
Pediatr Allergy Immunol ; 31(6): 651-661, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352598

RESUMO

BACKGROUND: Preschool asthma/recurrent wheeze is a heterogeneous condition. Different clinical phenotypes have been described, including episodic viral wheeze (EVW), severe intermittent wheeze (SIW), and multiple-trigger wheeze (MTW). OBJECTIVE: To compare clinical, viral, and inflammatory/immune profiling at exacerbation between MTW, SIW, and EVW phenotypes. METHODS: Multicenter, prospective, observational cohort (VIRASTHMA-2). Children (1-5 years) with preschool asthma were enrolled during hospitalization for a severe exacerbation. History and anamnestic data, plasma, and nasal samples were collected at exacerbation (T1) and at steady state, 8 weeks later (T2), and sputum samples were collected at T1. RESULTS: A total of 147 children were enrolled, 37 (25%) had SIW, 18 (12.2%) EVW, and 92 (63%) MTW. They were atopic (47%), exposed to mold (22%) and cigarette smoke (50%), and prone to exacerbations (≥2 in the previous year in 70%). At exacerbation, at least one virus was isolated in 94% and rhinovirus in 75%, with no difference between phenotypes. Children with MTW and SIW phenotypes displayed lower plasma concentrations of IFN-γ (P = .002), IL-5 (P = .020), TNF-α (P = .038), IL-10 (P = .002), IFN-ß (P = .036), and CXCL10 (P = .006) and lower levels of IFN-γ (P = .047) in sputum at exacerbation than children with EVW. At T2, they also displayed lower plasma levels of IFN-γ (P = .045) and CXCL10 (P = .013). CONCLUSION: Among preschool asthmatic children, MTW and SIW, prone to exacerbations, display lower systemic levels of Th1, Th2 cytokines, pro- and anti-inflammatory cytokines, and antiviral responses during severe virus-induced exacerbation.


Assuntos
Asma , Citocinas , Pré-Escolar , Humanos , Estudos Prospectivos , Sons Respiratórios , Rhinovirus
6.
Gastroenterology ; 153(2): 550-565, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28506689

RESUMO

BACKGROUND & AIMS: The role of tobacco smoke in the etiology of inflammatory bowel disease (IBD) is unclear. We investigated interactions between genes and smoking (gene-smoking interactions) that affect risk for Crohn's disease (CD) and ulcerative colitis (UC) in a case-only study of patients and in mouse models of IBD. METHODS: We used 55 Immunochip-wide datasets that included 19,735 IBD cases (10,856 CD cases and 8879 UC cases) of known smoking status. We performed 3 meta-analyses each for CD, UC, and IBD (CD and UC combined), comparing data for never vs ever smokers, never vs current smokers, and never vs former smokers. We studied the effects of exposure to cigarette smoke in Il10-/- and Nod2-/- mice, as well as in Balb/c mice without disruption of these genes (wild-type mice). Mice were exposed to the smoke of 5 cigarettes per day, 5 days a week, for 8 weeks, in a ventilated smoking chamber, or ambient air (controls). Intestines were collected and analyzed histologically and by reverse transcription polymerase chain reaction. RESULTS: We identified 64 single nucleotide polymorphisms (SNPs) for which the association between the SNP and IBD were modified by smoking behavior (meta-analysis Wald test P < 5.0 × 10-5; heterogeneity Cochrane Q test P > .05). Twenty of these variants were located within the HLA region at 6p21. Analysis of classical HLA alleles (imputed from SNP genotypes) revealed an interaction with smoking. We replicated the interaction of a variant in NOD2 with current smoking in relation to the risk for CD (frameshift variant fs1007insC; rs5743293). We identified 2 variants in the same genomic region (rs2270368 and rs17221417) that interact with smoking in relation to CD risk. Approximately 45% of the SNPs that interact with smoking were in close vicinity (≤1 Mb) to SNPs previously associated with IBD; many were located near or within genes that regulate mucosal barrier function and immune tolerance. Smoking modified the disease risk of some variants in opposite directions for CD vs UC. Exposure of Interleukin 10 (il10)-deficient mice to cigarette smoke accelerated development of colitis and increased expression of interferon gamma in the small intestine compared to wild-type mice exposed to smoke. NOD2-deficient mice exposed to cigarette smoke developed ileitis, characterized by increased expression of interferon gamma, compared to wild-type mice exposed to smoke. CONCLUSIONS: In an analysis of 55 Immunochip-wide datasets, we identified 64 SNPs whose association with risk for IBD is modified by tobacco smoking. Gene-smoking interactions were confirmed in mice with disruption of Il10 and Nod2-variants of these genes have been associated with risk for IBD. Our findings from mice and humans revealed that the effects of smoking on risk for IBD depend on genetic variants.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Fumar/genética , Alelos , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Frequência do Gene , Interação Gene-Ambiente , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos
7.
Arch Toxicol ; 92(7): 2327-2338, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29804187

RESUMO

The mycotoxin deoxynivalenol (DON) is a frequent contaminant of cereals and their by-products in areas with a moderate climate. Produced by Fusarium species, it is one of the most prevalent mycotoxins in cereal crops worldwide, and the most frequently occurring type B trichothecene in Europe. Due to its toxic properties, high stability and prevalence, the presence of DON in the food chain could represent a major public health risk. However, despite its well-known acute toxicological effects, information on the adverse effects of realistic exposure remains limited. We orally exposed mice during 9 months to DON at doses relevant for currently estimated human intake and explored the impact on various gut health parameters. DON exposure induced recruitment of regulatory B cells, and activation of regulatory T cells and dendritic cells in mesenteric lymph nodes. Several inflammatory parameters were increased in colon of DON-exposed mice, whereas inversely inflammatory markers were decreased in ileum. Histomorphological impairments were observed from the duodenum to the colon. Both colon and jejunum presented a hyperproliferation of epithelial cells and an increased expression of mature absorptive cells markers. Finally, DON exposure reshaped gut microbial structure and drastically disturbed the abundance of several bacterial phyla, families, and genera, leading to dysbiosis. Chronic oral exposure to human relevant doses of DON induces several disturbances of gut homeostasis with likely pathological implications for susceptible individuals.


Assuntos
Exposição Dietética/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Exposição Dietética/análise , Grão Comestível/química , Microbioma Gastrointestinal/genética , Homeostase/efeitos dos fármacos , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
8.
Eur Respir J ; 50(4)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29025886

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways caused mainly by cigarette smoke exposure. COPD progression is marked by exacerbations of the disease, often associated with infections. Recent data show the involvement in COPD pathophysiology of interleukin (IL)-17 and IL-22, two cytokines that are important in the control of lung inflammation and infection. During the initiation and progression of the disease, increased IL-17 secretion causes neutrophil recruitment, leading to chronic inflammation, airways obstruction and emphysema. In the established phase of COPD, a defective IL-22 response facilitates pathogen-associated infections and disease exacerbations. Altered production of these cytokines involves a complex network of immune cells and dysfunction of antigen-presenting cells. In this review, we describe current knowledge on the involvement of IL-17 and IL-22 in COPD pathophysiology at steady state and during exacerbations, and discuss implications for COPD management and future therapeutic approaches.


Assuntos
Interleucina-17/imunologia , Interleucinas/imunologia , Doença Pulmonar Obstrutiva Crônica , Progressão da Doença , Descoberta de Drogas , Humanos , Imunidade/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Interleucina 22
9.
Respir Res ; 18(1): 191, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29137638

RESUMO

BACKGROUND: Viruses are important triggers of asthma exacerbations. They are also detected outside of exacerbation. Alteration of anti-viral response in asthmatic patients has been shown although the mechanisms responsible for this defect remain unclear. The objective of this study was to compare in virus-infected and not-infected allergic asthmatic children, aged 6 to 16 years, admitted to hospital for a severe exacerbation, the innate immune response and especially the expression of pattern recognition receptor (PRR) and their function. METHODS: Virus identification was performed both during the exacerbation and at steady state (eight weeks later). Data assessed at both periods included clinical features, anti-viral response and inflammation (in sputum and plasma), and PRR expression/function in blood mononuclear cells. RESULTS: Viruses were identified in 46 out of 72 children (median age 8.9 years) during exacerbation, and among them, in 17 at steady state. IFN-ß, IFN-γ and IL-29 levels in sputum and plasma were similar between infected and not infected patients at both times, as well as the expression of TLR3, RIG-I and MDA5 in blood monocytes and dendritic cells. Airway inflammation in infected patients was characterized by significantly higher IL-5 concentration and eosinophil count. Compared to patients only infected at exacerbation, the re-infected children significantly exhibited lower levels of IFN-γ in plasma and sputum at exacerbation associated with modifications in PRR expression and function in blood mononuclear cells. These re-infected patients also presented an airway neutrophilic inflammation at steady state. CONCLUSION: Our results reports in asthmatic children that impaired anti-viral response during virus-induced exacerbation is more pronounced in a subgroup of patients prone to re-infection by virus. This subgroup is characterized by altered PRR function and a different pattern of airway inflammation. TRIAL REGISTRATION: This multicenter prospective study was approved by the regional investigational review board (ref: 08/07).


Assuntos
Asma/virologia , Progressão da Doença , Hipersensibilidade/virologia , Mediadores da Inflamação , Neutrófilos/virologia , Adolescente , Asma/imunologia , Asma/metabolismo , Criança , Feminino , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/virologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Estudos Prospectivos
10.
Part Fibre Toxicol ; 14(1): 46, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29166940

RESUMO

BACKGROUND: Air pollution is a recognized aggravating factor for pulmonary diseases and has notably deleterious effects on asthma, bronchitis and pneumonia. Recent studies suggest that air pollution may also cause adverse effects in the gastrointestinal tract. Accumulating experimental evidence shows that immune responses in the pulmonary and intestinal mucosae are closely interrelated, and that gut-lung crosstalk controls pathophysiological processes such as responses to cigarette smoke and influenza virus infection. Our first aim was to collect urban coarse particulate matter (PM) and to characterize them for elemental content, gastric bioaccessibility, and oxidative potential; our second aim was to determine the short-term effects of urban coarse PM inhalation on pulmonary and colonic mucosae in mice, and to test the hypothesis that the well-known antioxidant N-acetyl-L-cysteine (NAC) reverses the effects of PM inhalation. RESULTS: The collected PM had classical features of urban particles and possessed oxidative potential partly attributable to their metal fraction. Bioaccessibility study confirmed the high solubility of some metals at the gastric level. Male mice were exposed to urban coarse PM in a ventilated inhalation chamber for 15 days at a concentration relevant to episodic elevation peak of air pollution. Coarse PM inhalation induced systemic oxidative stress, recruited immune cells to the lung, and increased cytokine levels in the lung and colon. Concomitant oral administration of NAC reversed all the observed effects relative to the inhalation of coarse PM. CONCLUSIONS: Coarse PM-induced low-grade inflammation in the lung and colon is mediated by oxidative stress and deserves more investigation as potentiating factor for inflammatory diseases.


Assuntos
Poluentes Atmosféricos/toxicidade , Colo/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Acetilcisteína/farmacologia , Poluentes Atmosféricos/química , Animais , Antioxidantes/farmacologia , Colo/imunologia , Colo/metabolismo , Citocinas/imunologia , Mediadores da Inflamação/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Material Particulado/química , Solubilidade , Solventes/química , Água/química
11.
Respir Res ; 17(1): 94, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27460220

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is associated with chronic inflammation and impaired immune response to pathogens leading to bacteria-induced exacerbation of the disease. A defect in Th17 cytokines in response to Streptococcus pneumoniae, a bacteria associated with COPD exacerbations, has been recently reported. Dendritic cells (DC) are professional antigen presenting cells that drive T-cells differentiation and activation. In this study, we hypothesized that exposure to cigarette smoke, the main risk factor of COPD, might altered the pro-Th17 response to S. pneumoniae in COPD patients and human DC. METHODS: Pro-Th1 and -Th17 cytokine production by peripheral blood mononuclear cells (PBMC) from COPD patients was analyzed and compared to those from smokers and non-smokers healthy subjects. The effect of cigarette smoke extract (CSE) was analyzed on human monocyte-derived DC (MDDC) from controls exposed or not to S. pneumoniae. Bacteria endocytosis, maturation of MDDC and secretion of cytokines were assessed by flow cytometry and ELISA, respectively. Implication of the oxidative stress was analyzed by addition of antioxidants and mitochondria inhibitors. In parallel, MDDC were cocultured with autologous T-cells to analyze the consequence on Th1 and Th17 cytokine production. RESULTS: PBMC from COPD patients exhibited defective production of IL-1ß, IL-6, IL-12 and IL-23 to S. pneumoniae compared to healthy subjects and smokers. CSE significantly reduced S. pneumoniae-induced MDDC maturation, secretion of pro-Th1 and -Th17 cytokines and activation of Th1 and Th17 T-cell responses. CSE exposure was also associated with sustained CXCL8 secretion, bacteria endocytosis and mitochondrial oxidative stress. Antioxidants did not reverse these effects. Inhibitors of mitochondrial electron transport chain partly reproduced inhibition of S. pneumoniae-induced MDDC maturation but had no effect on cytokine secretion and T cell activation. CONCLUSIONS: We observed a defective pro-Th1 and -Th17 response to bacteria in COPD patients. CSE exposure was associated with an inhibition of DC capacity to activate antigen specific T-cell response, an effect that seems to be not only related to oxidative stress. These results suggest that new therapeutics boosting this response in DC may be helpful to improve treatment of COPD exacerbations.


Assuntos
Células Dendríticas/imunologia , Fumar/imunologia , Streptococcus pneumoniae/imunologia , Células Th17/imunologia , Adulto , Antioxidantes/metabolismo , Atividade Bactericida do Sangue , Citocinas/biossíntese , Células Dendríticas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/metabolismo , Nicotiana/toxicidade
13.
Eur Respir J ; 46(3): 771-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26250498

RESUMO

Chronic obstructive pulmonary disease (COPD) is punctuated by episodes of infection-driven acute exacerbations. Despite the life-threatening nature of these exacerbations, the underlying mechanisms remain unclear, although a high number of neutrophils in the lungs of COPD patients is known to correlate with poor prognosis. Interleukin (IL)-22 is a cytokine that plays a pivotal role in lung antimicrobial defence and tissue protection. We hypothesised that neutrophils secrete proteases that may have adverse effects in COPD, by altering the IL-22 receptor (IL-22R)-dependent signalling.Using in vitro and in vivo approaches as well as reverse transcriptase quantitative PCR, flow cytometry and/or Western blotting techniques, we first showed that pathogens such as the influenza virus promote IL-22R expression in human bronchial epithelial cells, whereas Pseudomonas aeruginosa, bacterial lipopolysaccharide or cigarette smoke do not. Most importantly, neutrophil proteases cleave IL-22R and impair IL-22-dependent immune signalling and expression of antimicrobial effectors such as ß-defensin-2. This proteolysis resulted in the release of a soluble fragment of IL-22R, which was detectable both in cellular and animal models as well as in sputa from COPD patients with acute exacerbations.Hence, our study reveals an unsuspected regulation by the proteolytic action of neutrophil enzymes of IL-22-dependent lung host response. This process probably enhances pathogen replication, and ultimately COPD exacerbations.


Assuntos
Células Epiteliais/enzimologia , Imunidade Inata/efeitos dos fármacos , Neutrófilos/metabolismo , Doença Pulmonar Obstrutiva Crônica/microbiologia , Receptores de Interleucina/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Humanos , Imunidade Inata/fisiologia , Camundongos , Neutrófilos/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina/imunologia , Estudos de Amostragem , Sensibilidade e Especificidade , Fumar/efeitos adversos , Estatísticas não Paramétricas , beta-Defensinas/farmacologia
15.
Int J Tryptophan Res ; 17: 11786469241232871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495475

RESUMO

The kynurenine pathway is the primary route for tryptophan catabolism and has received increasing attention as its association with inflammation and the immune system has become more apparent. This review provides a broad overview of the kynurenine pathway in respiratory diseases, from the initial observations to the characterization of the different cell types involved in the synthesis of kynurenine metabolites and the underlying immunoregulatory mechanisms. With a focus on respiratory infections, the various attempts to characterize the kynurenine/tryptophan (K/T) ratio as an inflammatory marker are reviewed. Its implication in chronic lung inflammation and its exacerbation by respiratory pathogens is also discussed. The emergence of preclinical interventional studies targeting the kynurenine pathway opens the way for the future development of new therapies.

16.
Front Immunol ; 15: 1347676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590519

RESUMO

The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.


Assuntos
Influenza Humana , Probióticos , Camundongos , Animais , Humanos , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Butiratos , Faecalibacterium/genética
17.
J Biol Chem ; 287(12): 8816-29, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22294696

RESUMO

Invariant natural killer T (iNKT) cells are non-conventional lipid-reactive αß T lymphocytes that play a key role in host responses during viral infections, in particular through the swift production of cytokines. Their beneficial role during experimental influenza A virus (IAV) infection has recently been proposed, although the mechanisms involved remain elusive. Here we show that during in vivo IAV infection, mouse pulmonary iNKT cells produce IFN-γ and IL-22, a Th17-related cytokine critical in mucosal immunity. Although permissive to viral replication, IL-22 production by iNKT cells is not due to IAV infection per se of these cells but is indirectly mediated by IAV-infected dendritic cells (DCs). We show that activation of the viral RNA sensors TLR7 and RIG-I in DCs is important for triggering IL-22 secretion by iNKT cells, whereas the NOD-like receptors NOD2 and NLRP3 are dispensable. Invariant NKT cells respond to IL-1ß and IL-23 provided by infected DCs independently of the CD1d molecule to release IL-22. In vitro, IL-22 protects IAV-infected airway epithelial cells against mortality but has no role on viral replication. Finally, during early IAV infection, IL-22 plays a positive role in the control of lung epithelial damages. Overall, IAV infection of DCs activates iNKT cells, providing a rapid source of IL-22 that might be beneficial to preserve the lung epithelium integrity.


Assuntos
Células Epiteliais/citologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Influenza Humana/fisiopatologia , Interleucinas/imunologia , Pulmão/citologia , Células T Matadoras Naturais/imunologia , Animais , Morte Celular , Células Epiteliais/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interleucina 22
18.
J Immunol ; 186(10): 5590-602, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21490153

RESUMO

Influenza A virus (IAV) infection results in a highly contagious respiratory illness leading to substantial morbidity and occasionally death. In this report, we assessed the in vivo physiological contribution of invariant NKT (iNKT) lymphocytes, a subset of lipid-reactive αß T lymphocytes, on the host response and viral pathogenesis using a virulent, mouse-adapted, IAV H3N2 strain. Upon infection with a lethal dose of IAV, iNKT cells become activated in the lungs and bronchoalveolar space to become rapidly anergic to further restimulation. Relative to wild-type animals, C57BL/6 mice deficient in iNKT cells (Jα18(-/-) mice) developed a more severe bronchopneumonia and had an accelerated fatal outcome, a phenomenon reversed by the adoptive transfer of NKT cells prior to infection. The enhanced pathology in Jα18(-/-) animals was not associated with either reduced or delayed viral clearance in the lungs or with a defective local NK cell response. In marked contrast, Jα18(-/-) mice displayed a dramatically reduced IAV-specific CD8(+) T cell response in the lungs and in lung-draining mediastinal lymph nodes. We further show that this defective CD8(+) T cell response correlates with an altered accumulation and maturation of pulmonary CD103(+), but not CD11b(high), dendritic cells in the mediastinal lymph nodes. Taken together, these findings point to a role for iNKT cells in the control of pneumonia as well as in the development of the CD8(+) T cell response during the early stage of acute IAV H3N2 infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inflamação/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Pulmão/imunologia , Células T Matadoras Naturais/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Viral/imunologia , Transferência Adotiva , Animais , Antígenos CD , Broncopneumonia , Antígeno CD11b , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Vírus da Influenza A Subtipo H3N2/patogenicidade , Cadeias alfa de Integrinas , Pulmão/virologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase , Carga Viral
19.
Cells ; 12(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887308

RESUMO

BACKGROUND: Dysregulated inflammation as seen in chronic obstructive pulmonary disease (COPD) is associated with impaired wound healing. IL-20 cytokines are known to be involved in wound healing processes. The purpose of this study was to use ex vivo and in vitro approaches mimicking COPD to evaluate the potential modulatory role of interleukin-20 (IL-20) on the inflammatory and healing responses to epithelial wounding. METHODS: The expression of IL-20 cytokines and their receptors was investigated in lung-derived samples collected from non-COPD and COPD patients, from mice chronically exposed to cigarette smoke and from airway epithelial cells from humans and mice exposed in vitro to cigarette smoke. To investigate the role of IL-20 cytokines in wound healing, experiments were performed using a blocking anti-IL-20Rb antibody. RESULTS: Of interest, IL-20 cytokines and their receptors were expressed in bronchial mucosa, especially on airway epithelial cells. Their expression correlated with the disease severity. Blocking these cytokines in a COPD context improved the repair processes after a lesion induced by scratching the epithelial layer. CONCLUSIONS: Collectively, this study highlights the implication of IL-20 cytokines in the repair of the airway epithelium and in the pathology of COPD. IL-20 subfamily cytokines might provide therapeutic benefit for patients with COPD to improve epithelial healing.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Fumar Cigarros/efeitos adversos , Citocinas/metabolismo , Interleucinas/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/metabolismo
20.
J Immunol ; 185(1): 451-9, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20505141

RESUMO

Respiratory viral infections have been implicated in exacerbations of allergic asthma, characterized by a Th2-biased immune response. Respiratory viruses target airway epithelial cells and dendritic cells (DCs). Their activation is, at least in part, mediated by the TLR3-dependent recognition of virus-derived dsRNA. To elucidate the role of epithelial cells and DCs and the implication of TLR3/Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) pathway, we developed a mouse model of lung allergic exacerbation. The effect of intranasal administration of dsRNA in OVA-sensitized wild-type mice and TRIF(-/-) mice was evaluated on airway hyperresponsiveness and pulmonary inflammation. Our data demonstrated that treatment with dsRNA significantly increased the airway hyperresponsiveness, the lung inflammation, and the OVA-specific Th2 response. This was associated with an infiltrate of eosinophils, myeloid DCs, and T lymphocytes. TRIF activation was required for the development of dsRNA-induced exacerbation of the allergic reaction. Intratracheal transfer of IL-4/dsRNA/OVA-pretreated DCs also triggered exacerbation of the allergic reaction, whereas cells primed with dsRNA/OVA had a more limited effect. dsRNA-induced production of CCL20 by airway epithelium was associated with DC recruitment. In vivo and in vitro treatment with dsRNA amplified airway epithelial production of the pro-Th2 chemokines CCL11 and CCL17, their secretion being enhanced by Th2 cytokines. In conclusion, dsRNA derived from respiratory viruses trigger exacerbation of the pulmonary allergic reaction through TLR3/TRIF-dependent pathway. Moreover, Th2 cytokines participate in this process by modulating the response of airway epithelium and DCs to dsRNA.


Assuntos
Alérgenos/administração & dosagem , Hiper-Reatividade Brônquica/imunologia , Células Dendríticas/imunologia , RNA de Cadeia Dupla/toxicidade , RNA Viral/toxicidade , Hipersensibilidade Respiratória/imunologia , Mucosa Respiratória/imunologia , Receptor 3 Toll-Like/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Alérgenos/imunologia , Animais , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/patologia , Células Dendríticas/patologia , Células Dendríticas/transplante , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , RNA de Cadeia Dupla/administração & dosagem , RNA Viral/administração & dosagem , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Mucosa Respiratória/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA