Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prostate ; 79(14): 1705-1714, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31433512

RESUMO

BACKGROUND: We identify and validate accurate diagnostic biomarkers for prostate cancer through a systematic evaluation of DNA methylation alterations. MATERIALS AND METHODS: We assembled three early prostate cancer cohorts (total patients = 699) from which we collected and processed over 1300 prostatectomy tissue samples for DNA extraction. Using real-time methylation-specific PCR, we measured normalized methylation levels at 15 frequently methylated loci. After partitioning sample sets into independent training and validation cohorts, classifiers were developed using logistic regression, analyzed, and validated. RESULTS: In the training dataset, DNA methylation levels at 7 of 15 genomic loci (glutathione S-transferase Pi 1 [GSTP1], CCDC181, hyaluronan, and proteoglycan link protein 3 [HAPLN3], GSTM2, growth arrest-specific 6 [GAS6], RASSF1, and APC) showed large differences between cancer and benign samples. The best binary classifier was the GAS6/GSTP1/HAPLN3 logistic regression model, with an area under these curves of 0.97, which showed a sensitivity of 94%, and a specificity of 93% after external validation. CONCLUSION: We created and validated a multigene model for the classification of benign and malignant prostate tissue. With false positive and negative rates below 7%, this three-gene biomarker represents a promising basis for more accurate prostate cancer diagnosis.


Assuntos
Biomarcadores Tumorais , Metilação de DNA/genética , Neoplasias da Próstata/classificação , Neoplasias da Próstata/patologia , DNA/isolamento & purificação , Epigênese Genética , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/genética , Glutationa S-Transferase pi/análise , Glutationa S-Transferase pi/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Neoplasias da Próstata/química , Proteoglicanas/análise , Proteoglicanas/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Explor Target Antitumor Ther ; 5(5): 1100-1109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351438

RESUMO

Aim: Human epidermal growth factor receptor-2 (HER2) is a well-established prognostic and predictive biomarker. It is an FDA-approved therapeutic target for HER2 positive breast, gastroesophageal, and more recently, lung and colon cancers. It is an emerging biomarker in biliary tract, bladder, cervical, endometrial, ovarian, and pancreatic cancers. The emergence of new indications warrants further characterization of HER2 expression in diverse cancer populations. This study investigated HER2 expression in solid tumour samples and the feasibility of obtaining these results. Methods: Prospective consent was obtained at a Canadian tertiary academic cancer center from adult oncology patients who were referred for molecular genetic testing of malignant tissue samples. Standard HER2-targeted malignancies were considered breast and gastroesophageal, and were excluded from this study. Between July 2020 and November 2023, 499 samples of solid tumors underwent immunohistochemistry (IHC) HER2 staining. A median turnaround time (TAT) of 14 days would be considered feasible for clinical decision making. Results: The mean age (± SD) of participants was 67 ± 12.5 years, with 270 (54%) male and 229 (46%) female. HER2 protein expression was measured in 42 unique cancer types. IHC levels of 0, 1+, 2+, and 3+ were reported and were 43%, 12%, 35%, and 10% of all analyzable samples respectively (tissue inadequate in 3% of samples). The median TAT for HER2 expression results from time of request to result in release was 18 (interquartile range, 11 to 30) days. Conclusions: HER2 protein expression varies widely between different cancer types. TAT for HER2 IHC results was a median of 18 days, which is close to our feasibility cut-off.

3.
Front Oncol ; 13: 1208244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483495

RESUMO

Background: Personalized targeted therapies have transformed management of several solid tumors. Timely and accurate detection of clinically relevant genetic variants in tumor is central to the implementation of molecular targeted therapies. To facilitate precise molecular testing in solid tumors, targeted next-generation sequencing (NGS) assays have emerged as a valuable tool. In this study, we provide an overview of the technical validation, diagnostic yields, and spectrum of variants observed in 3,164 solid tumor samples that were tested as part of the standard clinical diagnostic assessment in an academic healthcare institution over a period of 2 years. Methods: The Ion Ampliseq™ Cancer Hotspot Panel v2 assay (ThermoFisher) that targets ~2,800 COSMIC mutations from 50 oncogenes and tumor suppressor genes was validated, and a total of 3,164 tumor DNA samples were tested in 2 years. A total of 500 tumor samples were tested by the comprehensive panel containing all the 50 genes. Other samples, including 1,375 lung cancer, 692 colon cancer, 462 melanoma, and 135 brain cancer, were tested by tumor-specific targeted subpanels including a few clinically actionable genes. Results: Of 3,164 patient samples, 2,016 (63.7%) tested positive for at least one clinically relevant variant. Of 500 samples tested by a comprehensive panel, 290 had a clinically relevant variant with TP53, KRAS, and PIK3CA being the most frequently mutated genes. The diagnostic yields in major tumor types were as follows: breast (58.4%), colorectal (77.6%), lung (60.4%), pancreatic (84.6%), endometrial (72.4%), ovary (57.1%), and thyroid (73.9%). Tumor-specific targeted subpanels also demonstrated high diagnostic yields: lung (69%), colon (61.2%), melanoma (69.7%), and brain (20.7%). Co-occurrence of mutations in more than one gene was frequently observed. Conclusions: The findings of our study demonstrate the feasibility of integrating an NGS-based gene panel screen as part of a standard diagnostic protocol for solid tumor assessment. High diagnostic rates enable significant clinical impact including improved diagnosis, prognosis, and clinical management in patients with solid tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA