Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
2.
Neotrop Entomol ; 40(5): 600-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22068947

RESUMO

Bacillus thuringiensis harbors genes encoding Cry proteins found in chromosomes or plasmids of different sizes (4-150 Mb). Although the smaller plasmids are more abundant in B. thuringiensis, their specific function is unknown. As for the megaplasmids, their main recognized function is to harbor cry genes, although the sequencing of some of these plasmids indicates the occurrence of other important genes. This work used a new protocol for practical and rapid extraction of plasmid DNA in order to characterize the plasmid patterns of Brazilian strains belonging to Embrapa Milho e Sorgo research center B. thuringiensis bank. We tried to further assess the relationship of plasmid patterns with strains belonging to the same serovars and strains causing 100% and no mortality to Spodoptera frugiperda (J.E. Smith) larvae. It was possible to characterize 59 strains based on the migration of bands in agarose gel. Strains belonging to the same serovars showed different plasmid sizes (from 1,636 bp to 23,200 bp), with the exception of two strains belonging to serovar galleriae. The strain T09 Bt tolworthi showed a plasmid migration pattern identical to strains belonging to serovar galleriae. Plasmid patterns differed for 46 strains, confirming that this is a useful tool to discriminate specific strains. However, it was not possible to associate the plasmid pattern or the occurrence of particular plasmids with the pathogenicity of a given species towards S. frugiperda larvae.


Assuntos
Bacillus thuringiensis/genética , Lepidópteros/microbiologia , Plasmídeos/genética , Animais , Controle Biológico de Vetores/métodos
3.
Plant Sci ; 160(5): 857-868, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11297782

RESUMO

The hyperhydricity in eggplant (Solanum melongena L.) plants was monitored by the induction of the ER-luminal resident protein BiP. Although tissue culture conditions may induce BiP synthesis, the accumulation of BiP in hyperhydric shoots was consistently higher than in non-hyperhydric shoots. The leaf and stem anatomy in non-hyperhydric and hyperhydric eggplant was investigated aiming to identify structural changes associated with this phenomenon. In non-hyperhydric organs there were smaller and more organized cells, besides a more differentiated vascular system when compared with its hyperhydric counterpart. Scanning electron microscopy of leaves showed that leaf surface and stomata differentiation were also affected in hyperhydric plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA