Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 104(5): 609-18, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19168440

RESUMO

Phenotypic switching of vascular smooth muscle cells (VSMCs) is known to play a critical role in the development of atherosclerosis. However, the factors present within lesions that mediate VSMC phenotypic switching are unclear. Oxidized phospholipids (OxPLs), including 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC), are active components of minimally modified low density lipoprotein and have been previously shown to induce multiple proatherogenic events in endothelial cells and macrophages, but their effects on VSMCs have been largely unexplored until recently. We previously showed that OxPLs induced phenotypic switching of VSMCs, including suppression of SMC differentiation marker genes. The goal of the present studies was to test the hypothesis that OxPLs alter extracellular matrix production and VSMC migration. Results showed that POVPC activated expression of several extracellular matrix proteins in VSMC. POVPC increased expression of type VIII collagen alpha1 chain (Col8a1) mRNA in cultured VSMCs and in vivo in rat carotid arteries by 9-fold and 4-fold, respectively. POVPC-induced activation of Col8a1 gene expression was reduced by small interfering RNA-mediated suppression of Krüppel-like factor 4 (Klf4) and Sp1, and was abolished in Klf4-knockout VSMCs. POVPC increased Klf4 binding to the Col8a1 gene promoter both in vivo in rat carotid arteries and in cultured VSMCs based on chromatin immunoprecipitation assays. Moreover, POVPC-induced VSMC migration was markedly reduced in Klf4- or type VIII collagen-knockout VSMCs. Given evidence that OxPLs are present within atherosclerotic lesions, it is interesting to suggest that OxPL-induced changes in VSMC phenotype may contribute to the pathogenesis of atherosclerosis at least in part through changes in extracellular matrix composition.


Assuntos
Movimento Celular , Colágeno Tipo VIII/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfolipídeos/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Artérias Carótidas/metabolismo , Células Cultivadas , Colágeno Tipo VIII/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Fenótipo , Fosfatidilcolinas/metabolismo , Éteres Fosfolipídicos/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Transcrição Sp1/metabolismo , Fatores de Tempo , Transfecção , Regulação para Cima
2.
Circ Res ; 101(8): 792-801, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17704209

RESUMO

Atherosclerosis is a vascular disease characterized by lipid deposition and inflammation within the arterial wall. Oxidized phospholipids (oxPLs), such as 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) and its constituents 1-palmytoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are concentrated within atherosclerotic lesions and are known to be potent proinflammatory mediators. Phenotypic switching of smooth muscle cells (SMCs) plays a critical role in the development, progression, and end-stage clinical consequences of atherosclerosis, yet little is known regarding the effects of specific oxPLs on SMC phenotype. The present studies were focused on determining whether oxPLs regulate expression of SMC differentiation marker genes and the molecular mechanisms involved. Results showed that POVPC and PGPC induced profound suppression of smooth muscle (SM) alpha-actin and SM myosin heavy chain expression while simultaneously increasing expression of MCP-1, MCP-3, and cytolysin. OxPLs also induced nuclear translocation of Krüppel-like transcription factor 4 (KLF4), a known repressor of SMC marker genes. siRNA targeting of KLF4 nearly blocked POVPC-induced suppression of SMC marker genes, and myocardin. POVPC-induced repression of SMC marker genes was also significantly attenuated in KLF4 knockout SMCs. Taken together, these results suggest a novel role for oxPLs in phenotypic modulation of SMCs and indicate that these effects are dependent on the transcription factor, KLF4. These results may have important novel implications for the mechanisms by which oxPLs contribute to the pathogenesis of atherosclerosis.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Fosfolipídeos/metabolismo , Animais , Células Cultivadas , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Oxirredução , Fosfolipídeos/genética , Fosfolipídeos/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA