Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Acta Neuropathol ; 133(5): 731-749, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28083634

RESUMO

Dysregulated proteostasis is a key feature of a variety of neurodegenerative disorders. In Alzheimer's disease (AD), progression of symptoms closely correlates with spatiotemporal progression of Tau aggregation, with "early" oligomeric Tau forms rather than mature neurofibrillary tangles (NFTs) considered to be pathogenetic culprits. The ubiquitin-proteasome system (UPS) controls degradation of soluble normal and abnormally folded cytosolic proteins. The UPS is affected in AD and is identified by genomewide association study (GWAS) as a risk pathway for AD. The UPS is determined by balanced regulation of ubiquitination and deubiquitination. In this work, we performed isobaric tags for relative and absolute quantitation (iTRAQ)-based Tau interactome mapping to gain unbiased insight into Tau pathophysiology and to identify novel Tau-directed therapeutic targets. Focusing on Tau deubiquitination, we here identify Otub1 as a Tau-deubiquitinating enzyme. Otub1 directly affected Lys48-linked Tau deubiquitination, impairing Tau degradation, dependent on its catalytically active cysteine, but independent of its noncanonical pathway modulated by its N-terminal domain in primary neurons. Otub1 strongly increased AT8-positive Tau and oligomeric Tau forms and increased Tau-seeded Tau aggregation in primary neurons. Finally, we demonstrated that expression of Otub1 but not its catalytically inactive form induced pathological Tau forms after 2 months in Tau transgenic mice in vivo, including AT8-positive Tau and oligomeric Tau forms. Taken together, we here identified Otub1 as a Tau deubiquitinase in vitro and in vivo, involved in formation of pathological Tau forms, including small soluble oligomeric forms. Otub1 and particularly Otub1 inhibitors, currently under development for cancer therapies, may therefore yield interesting novel therapeutic avenues for Tauopathies and AD.


Assuntos
Cisteína Endopeptidases/genética , Enzimas Desubiquitinantes/metabolismo , Emaranhados Neurofibrilares/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Tauopatias/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia
2.
J Neuroinflammation ; 13: 20, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818951

RESUMO

BACKGROUND: The proinflammatory cytokine interleukin-1ß (IL-1ß) is overexpressed in Alzheimer disease (AD) as a key regulator of neuroinflammation. Amyloid-ß (Aß) peptide triggers activation of inflammasomes, protein complexes responsible for IL-1ß maturation in microglial cells. Downregulation of NALP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome has been shown to decrease amyloid load and rescue cognitive deficits in a mouse model of AD. Whereas activation of inflammasome in microglial cells has been described in AD, no data are currently available concerning activation of inflammasome in astrocytes, although they are involved in inflammatory response and phagocytosis. Here, by targeting the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD domain), we investigated the influence of activation of the inflammasome on the phagocytic activity of astrocytes. METHODS: We used an ASC knockout mouse model, as ASC is a central protein in the inflammasome, acting as an adaptor and stabilizer of the complex and thus critical for its activation. Lipopolysaccharide (LPS)-primed primary cultures of astrocytes from newborn mice were utilized to evaluate Aß-induced inflammasome activation by measuring IL-1ß release by ECLIA (electro-chemiluminescence immunoassay). Phagocytosis efficiency was measured by incorporation of bioparticles, and the release of the chemokine CCL3 (C-C motif ligand 3) was measured by ECLIA. ASC mice were crossbred with 5xFAD (familial Alzheimer disease) mice and tested for spatial reference memory using the Morris water maze (MWM) at 7-8 months of age. Amyloid load and CCL3 were quantified by thioflavine S staining and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. RESULTS: Cultured astrocytes primed with LPS and treated with Aß showed an ASC-dependent production of IL-1ß resulting from inflammasome activation mediated by Aß phagocytosis and cathepsin B enzymatic activity. ASC+/- astrocytes displayed a higher phagocytic activity as compared to ASC+/+ and ASC -/- cells, resulting from a higher release of the chemokine CCL3. A significant decrease in amyloid load was measured in the brain of 7-8-month-old 5xFAD mice carrying the ASC +/- genotype, correlated with an increase in CCL3 gene expression. In addition, the ASC +/- genotype rescued spatial reference memory deficits observed in 5xFAD mice. CONCLUSIONS: Our results demonstrate that Aß is able to activate astrocytic inflammasome. Downregulation of inflammasome activity increases phagocytosis in astrocytes due to the release of CCL3. This could explain why downregulation of inflammasome activity decreases amyloid load and rescues memory deficits in a mouse model of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/metabolismo , Fagócitos/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Astrócitos/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização CARD , Estudos de Casos e Controles , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL3/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Ionóforos/farmacologia , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Nigericina/farmacologia , Fragmentos de Peptídeos/farmacologia , Presenilina-1/genética
3.
Acta Neuropathol ; 129(6): 875-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862635

RESUMO

Prion-like seeding and propagation of Tau-pathology have been demonstrated experimentally and may underlie the stereotyped progression of neurodegenerative Tauopathies. However, the involvement of templated misfolding of Tau in neuronal network dysfunction and behavioral outcomes remains to be explored in detail. Here we analyzed the repercussions of prion-like spreading of Tau-pathology via neuronal connections on neuronal network function in TauP301S transgenic mice. Spontaneous and GABA(A)R-antagonist-induced neuronal network activity were affected following templated Tau-misfolding using synthetic preformed Tau fibrils in cultured primary neurons. Electrophysiological analysis in organotypic hippocampal slices of Tau transgenic mice demonstrated impaired synaptic transmission and impaired long-term potentiation following Tau-seed induced Tau-aggregation. Intracerebral injection of Tau-seeds in TauP301S mice, caused prion-like spreading of Tau-pathology through functionally connected neuroanatomical pathways. Electrophysiological analysis revealed impaired synaptic plasticity in hippocampal CA1 region 6 months after Tau-seeding in entorhinal cortex (EC). Furthermore, templated Tau aggregation impaired cognitive function, measured in the object recognition test 6 months post-seeding. In contrast, Tau-seeding in basal ganglia and subsequent spreading through functionally connected neuronal networks involved in motor control, resulted in motoric deficits reflected in clasping and impaired inverted grid hanging, not significantly affected following Tau-seeding in EC. Immunostaining, biochemical and electron microscopic analysis in the different models suggested early pathological forms of Tau, including Tau-oligomers, rather than fully mature neurofibrillary tangles (NFTs) as culprits of neuronal dysfunction. We here demonstrate for the first time using in vitro, ex vivo and in vivo models, that prion-like spreading of Tau-misfolding by Tau seeds, along unique neuronal connections, causes neuronal network dysfunction and associated behavioral dysfunction. Our data highlight the potential relevance of this mechanism in the symptomatic progression in Tauopathies. We furthermore demonstrate that the initial site of Tau-seeding thereby determines the behavioral outcome, potentially underlying the observed heterogeneity in (familial) Tauopathies, including in TauP301 mutants.


Assuntos
Mutação/genética , Príons/metabolismo , Deficiências na Proteostase , Tauopatias , Proteínas tau/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Fura-2/análogos & derivados , Fura-2/metabolismo , Hipocampo/citologia , Técnicas In Vitro , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Rede Nervosa/ultraestrutura , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/ultraestrutura , Tauopatias/genética , Tauopatias/patologia , Tauopatias/fisiopatologia , Proteínas tau/genética , Proteínas tau/ultraestrutura
4.
FASEB J ; 28(6): 2620-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24604080

RESUMO

Tau alterations are now considered an executor of neuronal demise and cognitive dysfunction in Alzheimer's disease (AD). Mouse models combining amyloidosis and tauopathy and their parental counterparts are important tools to further investigate the interplay of abnormal amyloid-ß (Aß) and Tau species in pathogenesis, synaptic and neuronal dysfunction, and cognitive decline. Here, we crossed APP/PS1 mice with 5 early-onset familial AD mutations (5xFAD) and TauP301S (PS19) transgenic mice, denoted F(+)/T(+) mice, and phenotypically compared them to their respective parental strains, denoted F(+)/T(-) and F(-)/T(+) respectively, as controls. We found dramatically aggravated tauopathy (~10-fold) in F(+)/T(+) mice compared to the parental F(-)/T(+) mice. In contrast, amyloidosis was unaltered compared to the parental F(+)/T(-) mice. Tauopathy was invariably and very robustly aggravated in hippocampal and cortical brain regions. Most important, F(+)/T(+) displayed aggravated cognitive deficits in a hippocampus-dependent spatial navigation task, compared to the parental F(+)/T(-) strain, while parental F(-)/T(+) mice did not display cognitive impairment. Basal synaptic transmission was impaired in F(+)/T(+) mice compared to nontransgenic mice and the parental strains (≥40%). Finally, F(+)/T(+) mice displayed a significant hippocampal atrophy (~20%) compared to nontransgenic mice, in contrast to the parental strains. Our data indicate for the first time that pathological Aß species (or APP/PS1) induced changes in Tau contribute to cognitive deficits correlating with synaptic deficits and hippocampal atrophy in an AD model. Our data lend support to the amyloid cascade hypothesis with a role of pathological Aß species as initiator and pathological Tau species as executor.


Assuntos
Doença de Alzheimer/patologia , Transtornos Cognitivos/etiologia , Transmissão Sináptica , Tauopatias/complicações , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Atrofia/patologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/patologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Tauopatias/patologia , Proteínas tau/genética
5.
J Neurochem ; 126(2): 183-90, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23495999

RESUMO

Despite intensive studies of the secretase-mediated processing of the amyloid precursor protein (APP) to form the amyloid ß-peptide (Aß), in relation to Alzheimer's disease (AD), no new therapeutic agents have reached the clinics based on reducing Aß levels through the use of secretase inhibitors or immunotherapy. Furthermore, the normal neuronal functions of APP and its various metabolites still remain under-investigated and unclear. Here, we highlight emerging areas of APP function that may provide new insights into synaptic development, cognition, and gene regulation. By modulating expression levels of endogenous APP in primary cortical neurons, the frequency and amplitude of calcium oscillations is modified, implying a key role for APP in maintaining neuronal calcium homeostasis essential for synaptic transmission. Disruption of this homeostatic mechanism predisposes to aging and AD. Synaptic spine loss is a feature of neurogeneration resulting in learning and memory deficits, and emerging evidence indicates a role for APP, probably mediated via one or more of its metabolites, in spine structure and functions. The intracellular domain of APP (AICD) has also emerged as a key epigenetic regulator of gene expression controlling a diverse range of genes, including APP itself, the amyloid-degrading enzyme neprilysin, and aquaporin-1. A fuller understanding of the physiological and pathological actions of APP and its metabolic network could provide new opportunities for therapeutic intervention in AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Humanos , Modelos Biológicos
6.
Am J Pathol ; 181(6): 1928-40, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23026200

RESUMO

Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aß42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aß40 and Aß42, and the Aß42/Aß40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of ß-C-terminal fragments (CTFs), and of ß-secretase 1 (BACE1) were also reduced, suggesting that ß-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aß.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Presenilina-1/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas tau/deficiência , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Ácido Aspártico Endopeptidases/metabolismo , Morte Celular , Espinhas Dendríticas/patologia , Espinhas Dendríticas/ultraestrutura , Humanos , Memória de Curto Prazo , Camundongos , Camundongos Transgênicos , Atividade Motora , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/ultraestrutura , Fosforilação , Fosfotreonina/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Solubilidade , Análise de Sobrevida , Sinapses/patologia , Sinapses/ultraestrutura , Proteínas tau/metabolismo
7.
Front Mol Neurosci ; 16: 1081657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168681

RESUMO

The postsynaptic inhibition through GABAA receptors (GABAAR) relies on two mechanisms, a shunting effect due to an increase in the postsynaptic membrane conductance and, in mature neurons, a hyperpolarization effect due to an entry of chloride into postsynaptic neurons. The second effect requires the action of the K+-Cl- cotransporter KCC2 which extrudes Cl- from the cell and maintains its cytosolic concentration very low. Neuronal chloride equilibrium seems to be dysregulated in several neurological and psychiatric conditions such as epilepsy, anxiety, schizophrenia, Down syndrome, or Alzheimer's disease. In the present study, we used the KCC2 Cre-lox knockdown system to investigate the role of KCC2 in synaptic plasticity and memory formation in adult mice. Tamoxifen-induced conditional deletion of KCC2 in glutamatergic neurons of the forebrain was performed at 3 months of age and resulted in spatial and nonspatial learning impairment. On brain slices, the stimulation of Schaffer collaterals by a theta burst induced long-term potentiation (LTP). The lack of KCC2 did not affect potentiation of field excitatory postsynaptic potentials (fEPSP) measured in the stratum radiatum (dendrites) but increased population spike (PS) amplitudes measured in the CA1 somatic layer, suggesting a reinforcement of the EPSP-PS potentiation, i.e., an increased ability of EPSPs to generate action potentials. At the cellular level, KCC2 deletion induced a positive shift in the reversal potential of GABAAR-driven Cl- currents (EGABA), suggesting an intracellular accumulation of chloride subsequent to the downregulation of KCC2. After treatment with bumetanide, an antagonist of the Na+-K+-Cl- cotransporter NKCC1, spatial memory impairment, chloride accumulation, and EPSP-PS potentiation were rescued in mice lacking KCC2. The presented results emphasize the importance of chloride equilibrium and GABA-inhibiting ability in synaptic plasticity and memory formation.

8.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34228639

RESUMO

Among genetic susceptibility loci associated with late-onset Alzheimer disease (LOAD), genetic polymorphisms identified in genes encoding lipid carriers led to the hypothesis that a disruption of lipid metabolism could promote disease progression. We previously reported that amyloid precursor protein (APP) involved in Alzheimer disease (AD) physiopathology impairs lipid synthesis needed for cortical networks' activity and that activation of peroxisome proliferator-activated receptor α (PPARα), a metabolic regulator involved in lipid metabolism, improves synaptic plasticity in an AD mouse model. These observations led us to investigate a possible correlation between PPARα function and full-length APP expression. Here, we report that PPARα expression and activation were inversely related to APP expression both in LOAD brains and in early-onset AD cases with a duplication of the APP gene, but not in control human brains. Moreover, human APP expression decreased PPARA expression and its related target genes in transgenic mice and in cultured cortical cells, while opposite results were observed in APP-silenced cortical networks. In cultured neurons, APP-mediated decrease or increase in synaptic activity was corrected by a PPARα-specific agonist and antagonist, respectively. APP-mediated control of synaptic activity was abolished following PPARα deficiency, indicating a key function of PPARα in this process.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/patologia , PPAR alfa/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Estudos de Casos e Controles , Linhagem Celular , Córtex Cerebral/citologia , Modelos Animais de Doenças , Feminino , Duplicação Gênica , Regulação da Expressão Gênica , Humanos , Lipogênese/genética , Masculino , Camundongos Transgênicos , Neurônios , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
9.
Sci Rep ; 11(1): 17600, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475508

RESUMO

The function of the amyloid precursor protein (APP) is not fully understood, but its cleavage product amyloid beta (Aß) together with neurofibrillary tangles constitute the hallmarks of Alzheimer's disease (AD). Yet, imbalance of excitatory and inhibitory neurotransmission accompanied by loss of synaptic functions, has been reported much earlier and independent of any detectable pathological markers. Recently, soluble APP fragments have been shown to bind to presynaptic GABAB receptors (GABABRs), subsequently decreasing the probability of neurotransmitter release. In this body of work, we were able to show that overexpression of wild-type human APP in mice (hAPPwt) causes early cognitive impairment, neuronal loss, and electrophysiological abnormalities in the absence of amyloid plaques and at very low levels of Aß. hAPPwt mice exhibited neuronal overexcitation that was evident in EEG and increased long-term potentiation (LTP). Overexpression of hAPPwt did not alter GABAergic/glutamatergic receptor components or GABA production ability. Nonetheless, we detected a decrease of GABA but not glutamate that could be linked to soluble APP fragments, acting on presynaptic GABABRs and subsequently reducing GABA release. By using a specific presynaptic GABABR antagonist, we were able to rescue hyperexcitation in hAPPwt animals. Our results provide evidence that APP plays a crucial role in regulating inhibitory neurotransmission.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Receptores de Glutamato/metabolismo , Regulação para Cima , Ácido gama-Aminobutírico/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Humanos , Masculino , Camundongos , Plasticidade Neuronal , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica
10.
J Neurosci ; 29(15): 4708-18, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19369541

RESUMO

Synchronous calcium oscillations are observed in primary cultures of rat cortical neurons when mature networks are formed. This spontaneous neuronal activity needs an accurate control of calcium homeostasis. Alteration of intraneuronal calcium concentration is described in many neurodegenerative disorders, including Alzheimer disease (AD). Although processing of amyloid precursor protein (APP) that generates Abeta peptide has critical implications for AD pathogenesis, the neuronal function of APP remains unclear. Here, we report that expression of human APP (hAPP) in rat cortical neurons increases L-type calcium currents, which stimulate SK channels, calcium-dependent K(+) channels responsible for medium afterhyperpolarization (mAHP). In a neuronal network, increased mAHP in some neurons expressing hAPP leads to inhibition of calcium oscillations in all the cells of the network. This inhibition is independent of production and secretion of Abeta and other APP metabolites. In a neuronal network, reduction of endogenous APP expression using shRNA increases the frequency and reduces the amplitude of calcium oscillations. Altogether, these data support a key role for APP in the control of neuronal excitability.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Sinalização do Cálcio/fisiologia , Cálcio/antagonistas & inibidores , Córtex Cerebral/fisiologia , Regulação para Baixo/fisiologia , Neurônios/fisiologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/genética , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/biossíntese , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Humanos , Neurônios/citologia , Neurônios/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar
11.
Rev Neurosci ; 21(3): 153-71, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20879690

RESUMO

UNLABELLED: Recent reports have drawn attention to dysfunctions of intrinsic neuronal excitability and network activity in Alzheimer disease (AD). Here we review the possible causes of these basic dysfunctions and implications for AD, based on in vitro and in vivo findings. We then review the current therapeutic approaches particularly linked to the issue of neuronal excitability in AD. CONCLUSION: AD is a complex, neurodegenerative disorder. Hippocampal synaptic dysfunction is an early feature of the degenerative process that is clearly linked to memory impairment, the first and major symptom of AD. A growing body of evidence points toward a dysfunction of neuronal networks. Intrinsic neuronal excitability, mainly through profound dysregulation of calcium homeostasis, appears to be largely affected. Consequently, neuronal communication is disturbed. Such cellular defects might underlie cognitive manifestations like fluctuations in cognitive impairment and might also explain several observations obtained with EEG, MEG, MRI, or PET studies, leading to the concept of a disconnection syndrome in AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Modelos Neurológicos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/patologia , Sinapses/fisiologia
12.
Biochem J ; 425(1): 127-36, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19807691

RESUMO

The brain-specific compound NAA (N-acetylaspartate) occurs almost exclusively in neurons, where its concentration reaches approx. 20 mM. Its abundance is determined in patients by MRS (magnetic resonance spectroscopy) to assess neuronal density and health. The molecular identity of the NAT (N-acetyltransferase) that catalyses NAA synthesis has remained unknown, because the enzyme is membrane-bound and difficult to purify. Database searches indicated that among putative NATs (i.e. proteins homologous with known NATs, but with uncharacterized catalytic activity) encoded by the human and mouse genomes two were almost exclusively expressed in brain, NAT8L and NAT14. Transfection studies in HEK-293T [human embryonic kidney-293 cells expressing the large T-antigen of SV40 (simian virus 40)] indicated that NAT8L, but not NAT14, catalysed the synthesis of NAA from L-aspartate and acetyl-CoA. The specificity of NAT8L, its Km for aspartate and its sensitivity to detergents are similar to those described for brain Asp-NAT. Confocal microscopy analysis of CHO (Chinese-hamster ovary) cells and neurons expressing recombinant NAT8L indicates that it is associated with the ER (endoplasmic reticulum), but not with mitochondria. A mutation search in the NAT8L gene of the only patient known to be deficient in NAA disclosed the presence of a homozygous 19 bp deletion, resulting in a change in reading frame and the absence of production of a functional protein. We conclude that NAT8L, a neuron-specific protein, is responsible for NAA synthesis and is mutated in primary NAA deficiency (hypoacetylaspartia). The molecular identification of this enzyme will lead to new perspectives in the clarification of the function of this most abundant amino acid derivative in neurons and for the diagnosis of hypoacetylaspartia in other patients.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Ácido Aspártico/análogos & derivados , Mutação , Acetilcoenzima A/metabolismo , Animais , Ácido Aspártico/deficiência , Ácido Aspártico/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Células CHO , Catálise , Linhagem Celular , Células Cultivadas , Cricetinae , Cricetulus , Bases de Dados Genéticas , Retículo Endoplasmático/metabolismo , Humanos , Cinética , Microscopia Confocal , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Ratos , Especificidade por Substrato , Transfecção
13.
Cells ; 9(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422896

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Mutations in genes encoding proteins involved in amyloid-ß peptide (Aß) production are responsible for inherited AD cases. The amyloid cascade hypothesis was proposed to explain the pathogeny. Despite the fact that Aß is considered as the main culprit of the pathology, most clinical trials focusing on Aß failed and suggested that earlier interventions are needed to influence the course of AD. Therefore, identifying risk factors that predispose to AD is crucial. Among them, the epsilon 4 allele of the apolipoprotein E gene that encodes the major brain lipid carrier and metabolic disorders such as obesity and type 2 diabetes were identified as AD risk factors, suggesting that abnormal lipid metabolism could influence the progression of the disease. Among lipids, fatty acids (FAs) play a fundamental role in proper brain function, including memory. Peroxisome proliferator-activated receptor α (PPARα) is a master metabolic regulator that regulates the catabolism of FA. Several studies report an essential role of PPARα in neuronal function governing synaptic plasticity and cognition. In this review, we explore the implication of lipid metabolism in AD, with a special focus on PPARα and its potential role in AD therapy.


Assuntos
Doença de Alzheimer/metabolismo , Lipídeos/química , PPAR alfa/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Animais , Cognição , Humanos , Caracteres Sexuais
14.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327470

RESUMO

The amyloid precursor protein (APP) has been extensively studied as the precursor of the ß-amyloid (Aß) peptide, the major component of the senile plaques found in the brain of Alzheimer's disease (AD) patients. However, the function of APP per se in neuronal physiology remains to be fully elucidated. APP is expressed at high levels in the brain. It resembles a cell adhesion molecule or a membrane receptor, suggesting that its function relies on cell-cell interaction and/or activation of intracellular signaling pathways. In this respect, the APP intracellular domain (AICD) was reported to act as a transcriptional regulator. Here, we used a transcriptome-based approach to identify the genes transcriptionally regulated by APP in the rodent embryonic cortex and on maturation of primary cortical neurons. Surprisingly, the overall transcriptional changes were subtle, but a more detailed analysis pointed to genes clustered in neuronal-activity dependent pathways. In particular, we observed a decreased transcription of neuronal PAS domain protein 4 (NPAS4) in APP-/- neurons. NPAS4 is an inducible transcription factor (ITF) regulated by neuronal depolarization. The downregulation of NPAS4 co-occurs with an increased production of the inhibitory neurotransmitter GABA and a reduced expression of the GABAA receptors α1. CRISPR-Cas-mediated silencing of NPAS4 in neurons led to similar observations. Patch-clamp investigation did not reveal any functional decrease of GABAA receptors activity, but long-term potentiation (LTP) measurement supported an increased GABA component in synaptic transmission of APP-/- mice. Together, NPAS4 appears to be a downstream target involved in APP-dependent regulation of inhibitory synaptic transmission.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Humanos , Camundongos , Transmissão Sináptica , Fatores de Transcrição , Ácido gama-Aminobutírico
16.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894406

RESUMO

Mechanisms driving cognitive improvements following nuclear receptor activation are poorly understood. The peroxisome proliferator-activated nuclear receptor alpha (PPARα) forms heterodimers with the nuclear retinoid X receptor (RXR). We report that PPARα mediates the improvement of hippocampal synaptic plasticity upon RXR activation in a transgenic mouse model with cognitive deficits. This improvement results from an increase in GluA1 subunit expression of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, eliciting an AMPA response at the excitatory synapses. Associated with a two times higher PPARα expression in males than in females, we show that male, but not female, PPARα null mutants display impaired hippocampal long-term potentiation. Moreover, PPARα knockdown in the hippocampus of cognition-impaired mice compromises the beneficial effects of RXR activation on synaptic plasticity only in males. Furthermore, selective PPARα activation with pemafibrate improves synaptic plasticity in male cognition-impaired mice, but not in females. We conclude that striking sex differences in hippocampal synaptic plasticity are observed in mice, related to differences in PPARα expression levels.


Assuntos
Dosagem de Genes/genética , Potenciação de Longa Duração/genética , Plasticidade Neuronal/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Animais , Benzoxazóis/farmacologia , Butiratos/farmacologia , Células Cultivadas , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , PPAR alfa/agonistas , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores X de Retinoides/metabolismo , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos
17.
Bull Acad Natl Med ; 192(2): 323-31; discussion 331-2, 2008 Feb.
Artigo em Francês | MEDLINE | ID: mdl-18819686

RESUMO

Alzheimer's disease is characterized by the presence of neurofibrillary tangles and senile plaque in the brain. Both disorders must be present in order to confirm a clinical diagnosis of Alzheimer's disease. Neurofibrillary tangles contain hyperphosphorylated microtubule-associated protein tau, while senile plaque contains a core of amyloidpeptide derived from its precursor. Phosphorylation of both amyloid precursor protein and tau represents a biochemical link between the two characteristic lesions of Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Emaranhados Neurofibrilares/química , Placa Amiloide/química , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Sinalização do Cálcio , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Fosforilação , Placa Amiloide/patologia , Estrutura Terciária de Proteína
18.
Neurobiol Aging ; 55: 202-212, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28464981

RESUMO

Alzheimer's disease is characterized by the presence of 2 neuropathological lesions: neurofibrillary tangles, composed of tau proteins which are highly phosphorylated and phosphorylated on uncommon sites, and amyloid plaques, containing the Aß peptides generated from the amyloid precursor protein (APP). Reduction of some APP proteolytic derivatives in Alzheimer's disease such as sAPPα fragment has been reported and sAPPα has been shown to affect tau phosphorylation. To investigate in vivo the effect of absence of APP protein and its fragments on tau phosphorylation and the formation of neurofibrillary tangles, we have generated mice deleted for APP gene and overexpressing a human mutant tau protein and developing neurofibrillary tangles (APPKOTg30 mice). These APPKOTg30 mice showed more severe motor and cognitive deficits, increased tau phosphorylation, increased load of neurofibrillary tangles, and increased p25/35 ratio in the brain, compared with Tg30 mice. These data suggest that APP and/or its proteolytic derivatives interfere with the formation of neurofibrillary tangles in a transgenic mouse model that will be useful for investigating the relationship between APP and tau.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Mutação , Emaranhados Neurofibrilares/patologia , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Proteínas tau/metabolismo
19.
Sci Rep ; 7(1): 370, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28337033

RESUMO

The amyloid precursor protein (APP) modulates synaptic activity, resulting from the fine tuning of excitatory and inhibitory neurotransmission. GABAergic inhibitory neurotransmission is affected by modifications in intracellular chloride concentrations regulated by Na+-K+-2Cl- cotransporter 1 (NKCC1) and neuronal K+-Cl- cotransporter 2 (KCC2), allowing entrance and efflux of chloride, respectively. Modifications in NKCC1 and KCC2 expression during maturation of cortical cells induce a shift in GABAergic signaling. Here, we demonstrated that APP affects this GABA shift. Expression of APP in cortical cells decreased the expression of KCC2, without modifying NKCC1, eliciting a less inhibitory GABA response. Downregulation of KCC2 expression by APP was independent of the APP intracellular domain, but correlated with decreased expression of upstream stimulating factor 1 (USF1), a potent regulator of Slc12a5 gene expression (encoding KCC2). KCC2 was also downregulated in vivo following APP expression in neonatal mouse brain. These results argue for a key role of APP in the regulation of GABAergic neurotransmission.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Córtex Cerebral/fisiologia , Neurônios GABAérgicos/fisiologia , Transmissão Sináptica , Ácido gama-Aminobutírico/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Sinalização do Cálcio , Córtex Cerebral/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Ratos Wistar , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Cotransportadores de K e Cl-
20.
J Alzheimers Dis ; 49(2): 271-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26444777

RESUMO

We present the effects of Targretin® (bexarotene) on cognition and biomarkers in a patient with mild Alzheimer's disease (AD). Targretin® is a Retinoic X Receptor (RXR) agonist shown to improve synaptic and cognitive functions in animal models of AD by increasing neuronal cholesterol efflux. After 6 months of treatment with Targretin® 300 mg/day, memory improved by about 40% and the tau protein in the cerebrospinal fluid decreased by about 20% . No significant side effects were noticed. This observation in a single patient indicates that Targretin® may improve memory performance and biological markers at an early stage of AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Biomarcadores/líquido cefalorraquidiano , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Tetra-Hidronaftalenos/uso terapêutico , Idoso , Doença de Alzheimer/tratamento farmacológico , Proteínas Amiloidogênicas/líquido cefalorraquidiano , Bexaroteno , Humanos , Masculino , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/ética , Testes Neuropsicológicos , Receptores do Ácido Retinoico/agonistas , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA