Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Sci Food Agric ; 97(14): 4827-4834, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28382717

RESUMO

BACKGROUND: There are many substances that can interfere with olive oil quality. Some of them are well characterized, but many others have an unknown origin. Saturated hydrocarbons make an extraordinary complex family of numerous molecules, some of them present naturally in vegetable oils. When major natural saturated hydrocarbons are analyzed by standard chromatographic methods, this complex mixture of saturated hydrocarbons appears as a hump in the chromatogram and is commonly named as unresolved complex mixture (UCM), whose origin remains unknown. RESULTS: In this work we studied the occurrence and the origin of aliphatic saturated hydrocarbons in olive oil. Hydrocarbons were analyzed in olive oil and along the industrial process of oil extraction. We also analyzed n-alkanes and the UCM fraction of hydrocarbons in leaf, fruit and oil from different varieties and different locations, and we also analyzed the soils at these locations. CONCLUSIONS: We conclude that the hydrocarbons present in olive oil do not necessarily have their origin in a contamination during olive oil elaboration; they seem to have a natural origin, as a result of olive tree metabolism and/or as the result of an intake and accumulation by the olive tree directly from the environment during its entire life cycle. © 2017 Society of Chemical Industry.


Assuntos
Contaminação de Alimentos/análise , Frutas/química , Hidrocarbonetos/análise , Olea/química , Azeite de Oliva/análise , Alcanos/análise , Folhas de Planta/química , Poluentes do Solo/análise
2.
Plant Cell Environ ; 39(8): 1767-79, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27004600

RESUMO

Purines are essential molecules formed in a highly regulated pathway in all organisms. In tropical legumes, the nitrogen fixed in the nodules is used to generate ureides through the oxidation of de novo synthesized purines. Glutamine phosphoribosyl pyrophosphate amidotransferase (PRAT) catalyses the first committed step of de novo purine synthesis. In Phaseolus vulgaris there are three genes coding for PRAT. The three full-length sequences, which are intron-less genes, were cloned, and their expression levels were determined under conditions that affect the synthesis of purines. One of the three genes, PvPRAT3, is highly expressed in nodules and protein amount and enzymatic activity in these tissues correlate with nitrogen fixation activity. Inhibition of PvPRAT3 gene expression by RNAi-silencing and subsequent metabolomic analysis of the transformed roots shows that PvPRAT3 is essential for the synthesis of ureides in P. vulgaris nodules.


Assuntos
Amidofosforribosiltransferase/metabolismo , Nitrogênio/metabolismo , Phaseolus/enzimologia , Nódulos Radiculares de Plantas/metabolismo , Amidofosforribosiltransferase/genética , Sequência de Aminoácidos , Isoenzimas/metabolismo , Fixação de Nitrogênio , Phaseolus/genética , Análise de Sequência de DNA
3.
Physiol Plant ; 152(1): 43-58, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24460648

RESUMO

Allantoate degradation is an essential step for recycling purine-ring nitrogen in all plants, but especially in tropical legumes where the ureides allantoate and allantoin are the main compounds used to store and transport the nitrogen fixed in nodules. Two enzymes, allantoate amidohydrolase (AAH) and allantoate amidinohydrolase (allantoicase), could catalyze allantoate breakdown, although only AAH-coding sequences have been found in plant genomes, whereas allantoicase-related sequences are restricted to animals and some microorganisms. A cDNA for AAH was cloned from Phaseolus vulgaris leaves. PvAAH is a single-copy gene encoding a polypeptide of 483 amino acids that conserves all putative AAH active-site domains. Expression and purification of the cDNA in Nicotiana benthamiana showed that the cloned sequence is a true AAH protein that yields ureidoglycine and ammonia, with a Km of 0.46 mM for allantoate. Optimized in vitro assay, quantitative RT-PCR and antibodies raised to the PvAAH protein were used to study AAH under physiological conditions. PvAAH is ubiquitously expressed in common bean tissues, although the highest transcript levels were found in leaves. In accordance with the mRNA expression levels, the highest PvAAH activity and allantoate concentration also occurred in the leaves. Comparison of transcript levels, protein amounts and enzymatic activity in plants grown with different nitrogen sources and upon drought stress conditions showed that PvAAH is regulated at posttranscriptional level. Moreover, RNAi silencing of AAH expression increases allantoate levels in the transgenic hairy roots, indicating that AAH should be the main enzyme involved in allantoate degradation in common bean.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Phaseolus/enzimologia , Ureo-Hidrolases/genética , Animais , Anticorpos , Sequência de Bases , DNA Complementar/genética , Secas , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Inativação Gênica , Dados de Sequência Molecular , Especificidade de Órgãos , Phaseolus/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Coelhos , Análise de Sequência de DNA , Nicotiana/genética , Nicotiana/metabolismo , Ureia/análogos & derivados , Ureia/metabolismo , Ureo-Hidrolases/metabolismo
4.
J Exp Bot ; 64(8): 2171-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23580751

RESUMO

Drought stress is a major factor limiting symbiotic nitrogen fixation (NF) in soybean crop production. However, the regulatory mechanisms involved in this inhibition are still controversial. Soybean plants were symbiotically grown in a split-root system (SRS), which allowed for half of the root system to be irrigated at field capacity while the other half remained water deprived. NF declined in the water-deprived root system while nitrogenase activity was maintained at control values in the well-watered half. Concomitantly, amino acids and ureides accumulated in the water-deprived belowground organs regardless of transpiration rates. Ureide accumulation was found to be related to the decline in their degradation activities rather than increased biosynthesis. Finally, proteomic analysis suggests that plant carbon metabolism, protein synthesis, amino acid metabolism, and cell growth are among the processes most altered in soybean nodules under drought stress. Results presented here support the hypothesis of a local regulation of NF taking place in soybean and downplay the role of ureides in the inhibition of NF.


Assuntos
Glycine max/fisiologia , Fixação de Nitrogênio/fisiologia , Nodulação/fisiologia , Estresse Fisiológico/fisiologia , Aminoácidos/análise , Aminoácidos/metabolismo , Secas , Transpiração Vegetal/fisiologia , Proteômica , Glycine max/química , Glycine max/metabolismo , Ureia/análise , Ureia/metabolismo
6.
J Exp Bot ; 63(11): 4095-106, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442417

RESUMO

The ureides allantoin and allantoate are key molecules in the transport and storage of nitrogen in ureide legumes. In shoots and leaves from Phaseolus vulgaris plants using symbiotically fixed nitrogen as the sole nitrogen source, ureide levels were roughly equivalent to those of nitrate-supported plants during the whole vegetative stage, but they exhibited a sudden increase at the onset of flowering. This rise in the level of ureides, mainly in the form of allantoate, was accompanied by increases in allantoinase gene expression and enzyme activity, consistent with developmental regulation of ureide levels mainly through the tissue-specific induction of allantoate synthesis catalysed by allantoinase. Moreover, surprisingly high levels of ureides were also found in non-nodulated plants fertilized with nitrate, at both early and late developmental stages. The results suggest that remobilized N from lower leaves is probably involved in the sharp rise in ureides in shoots and leaves during early pod filling in N(2)-fixing plants and in the significant amounts of ureides observed in non-nodulated plants.


Assuntos
Alantoína/metabolismo , Amidoidrolases/metabolismo , Regulação Enzimológica da Expressão Gênica , Phaseolus/enzimologia , Phaseolus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Amidoidrolases/genética , Regulação da Expressão Gênica no Desenvolvimento , Nitrogênio/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Especificidade da Espécie
7.
J Exp Bot ; 62(1): 307-18, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20813786

RESUMO

Ureidoglycolate is an intermediate in the degradation of the ureides, allantoin and allantoate, found in many organisms. In some leguminous plant species these compounds are used to transport recently fixed nitrogen in the root nodules to the aerial parts of the plant. In the present study, it was demonstrated that purified ureidoglycolases from chickpea (Cicer arietinum) and French bean (Phaseolus vulgaris) do not produce glyoxylate, and can use phenylhydrazine as a substrate with K(m) values of 4.0 mM and 8.5 mM, respectively. Furthermore, these enzymes catalyse the transfer of the ureidoglycolyl group to phenylhydrazine to produce ureidoglycolyl phenylhydrazide, which degrades non-enzymatically to glyoxylate phenylhydrazone and urea. This supports their former classification as ureidoglycolate urea-lyases. The enzymatic reaction catalysed by the characterized ureidoglycolases uncovered here can be viewed as a novel type of phenylhydrazine ureidoglycolyl transferase. The implications of these findings for ureide metabolism in legume nitrogen metabolism are discussed.


Assuntos
Amidina-Liases/metabolismo , Cicer/metabolismo , Glicolatos/metabolismo , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Ureia/metabolismo , Amidina-Liases/genética , Cicer/enzimologia , Cicer/genética , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Phaseolus/enzimologia , Phaseolus/genética , Proteínas de Plantas/genética
8.
Physiol Plant ; 143(4): 316-28, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883249

RESUMO

γ-Tocopherol methyltransferase (γ-TMT) (EC 2.1.1.95) is a very important enzyme in tocopherol biosynthesis in all photosynthetic organisms. In this paper, we present the functional characterization and expression analysis of γ-TMT from the unicellular green alga Chlamydomonas reinhardtii. Recombinant TMT1 enzyme was purified and characterized. The size of TMT1 subunit was estimated as 37 kDa by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), in accordance with the predicted molecular size after TMT1 cDNA sequence. Recombinant TMT1 also showed an apparent molecular mass of 37 kDa in its native conformation, suggesting that native TMT1 has a monomeric structure similar to the plant TMTs already characterized. pH and temperature dependence of TMT1 activity were also similar to plant TMTs. Substrate specificity studies showed that Chlamydomonas TMT1 is responsible for the conversion of γ- and δ-tocopherol to α- and ß-tocopherol, respectively. The kinetic properties of Chlamydomonas recombinant γ-TMT activity were studied and γ-TMT1 has a similar affinity for γ- and δ-tocopherol. Promoter sequence analysis and expression analysis by northern blot revealed that tmt1 expression is strongly upregulated by high light and downregulated by low temperature. This regulatory pattern of tmt1 expression supports the idea that γ- and α-tocopherol play specific roles in the adaptation to growth under low temperature and high light stress conditions.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Bases , Chlamydomonas reinhardtii/genética , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Metiltransferases/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , RNA de Plantas/genética , Análise de Sequência de DNA , Temperatura , Tocoferóis/metabolismo
9.
Front Plant Sci ; 12: 651015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841480

RESUMO

Nucleoside hydrolases (NSH; nucleosidases) catalyze the cleavage of nucleosides into ribose and free nucleobases. These enzymes have been postulated as key elements controlling the ratio between nucleotide salvage and degradation. Moreover, they play a pivotal role in ureidic legumes by providing the substrate for the synthesis of ureides. Furthermore, nucleotide metabolism has a crucial role during germination and early seedling development, since the developing seedlings require high amount of nucleotide simultaneously to the mobilization of nutrient in cotyledons. In this study, we have cloned two nucleosidases genes from Phaseolus vulgaris, PvNSH1 and PvNSH2, expressed them as recombinant proteins, and characterized their catalytic activities. Both enzymes showed a broad range of substrate affinity; however, PvNSH1 exhibited the highest activity with uridine, followed by xanthosine, whereas PvNSH2 hydrolyses preferentially xanthosine and shows low activity with uridine. The study of the regulation of nucleosidases during germination and early postgerminative development indicated that nucleosidases are induced in cotyledons and embryonic axes just after the radicle emergence, coincident with the induction of nucleases activity and the synthesis of ureides in the embryonic axes, with no remarkable differences in the level of expression of both nucleosidase genes. In addition, nucleosides and nucleobase levels were determined as well in cotyledons and embryonic axes. Our results suggest that PvNSH1 and PvNSH2 play an important role in the mobilization of nutrients during this crucial stage of plant development.

10.
Plant Cell Environ ; 33(11): 1828-37, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20545885

RESUMO

Under water deficit, ureidic legumes accumulate ureides in plant tissues, and this accumulation has been correlated with the inhibition of nitrogen fixation. In this work we used a molecular approach to characterize ureide accumulation under drought stress in Phaseolus vulgaris. Accumulation of ureides, mainly allantoate, was found in roots, shoots and leaves, but only a limited transient increase was observed in nodules from drought-stressed plants. We show that ureide accumulation is regulated at the transcriptional level mainly through induction of allantoinase (ALN), whereas allantoate amidohydrolase (AAH), involved in allantoate degradation, was slightly reduced, indicating that inhibition of this enzyme, key in ureide breakdown in aerial tissues, is not the main cause of allantoate accumulation. Expression of the ureide metabolism genes analysed in this study was induced by abscisic acid (ABA), suggesting the involvement of this plant hormone in ureide accumulation. Moreover, we observed that increases of ureide levels in P. vulgaris drought-stressed tissues were similar in non-nodulated, nitrate-fed plants, and in plants cultured under nitrogen-fixation conditions. Our results indicate that ureide accumulation in response to water deficit is independent from de novo synthesis of ureides in nodules, and therefore uncoupled from nitrogen fixation.


Assuntos
Secas , Phaseolus/metabolismo , Ureia/metabolismo , Ácido Abscísico/metabolismo , Amidoidrolases/metabolismo , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Phaseolus/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , RNA de Plantas/genética , Estresse Fisiológico , Ureia/análogos & derivados , Ureo-Hidrolases/metabolismo
11.
Plants (Basel) ; 9(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371446

RESUMO

Drought is probably the most harmful stress affecting common bean crops. Domestication, worldwide spread and local farming practices has entailed the development of a wide variety of common bean genotypes with different degrees of resistance to water stress. In this work, physiological and molecular responses to water stress have been compared in two common bean accessions, PHA-0683 and PMB-0220, previously identified as highly and moderately resistant to water stress, respectively. Our hypothesis was that only quantitative differences in the expression patterns of key genes should be found if molecular mechanisms regulating drought resistance are similar in the two accessions. However, results presented here indicate that the resistance to drought in PMB-0220 and PHA-0683 common bean accessions is regulated by different molecular mechanisms. Differential regulation of ABA synthesis and ABA signaling related genes among the two genotypes, and the control of the drought-induced senescence have a relevant contribution to the higher resistance level of PHA-0683 accession. Our results also suggest that expression patterns of key senescence-related transcription factors could be considered in the screening for drought resistance in common bean germplasm collections.

12.
Plants (Basel) ; 9(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252433

RESUMO

Drought is one of the most critical factors limiting legume crop productivity. Understanding the molecular mechanisms of drought tolerance in the common bean is required to improve the yields of this important crop under adverse conditions. In this work, RNA-seq analysis was performed to compare the transcriptome profiles of drought-stressed and well-irrigated plants of a previously characterized drought-tolerant common bean landrace. The analysis revealed responses related with the abscisic acid signaling, including downregulation of a phosphatase 2C (PP2C) and an abscisic acid-8' hydroxylase, and upregulation of several key transcription factors and genes involved in cell wall remodeling, synthesis of osmoprotectants, protection of photosynthetic apparatus, and downregulation of genes involved in cell expansion. The results also highlighted a significant proportion of differentially expressed genes related to phosphate starvation response. In addition, the moderate detrimental effects of drought in the biomass of these tolerant plants were abolished by the addition of phosphate, thus indicating that, besides the ABA-mediated response, acquisition of phosphate could be crucial for the drought tolerance of this common bean genotype. These results provided information about the mechanisms involved in drought response of common bean response that could be useful for enhancing the drought tolerance of this important crop legume.

13.
Plant Physiol Biochem ; 147: 235-241, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31881432

RESUMO

The increase in soil salinization due to global climate change could cause large losses in crop productivity affecting, among other biological processes, to germination and seedling development. We have studied how salt stress affects nucleic acid degrading activities in radicles of common bean during seedling development. In radicles of common bean, a main nuclease of 37 kDa and two ribonucleases of 17 and 19 kDa were detected. Saline stress did not alter these three activities but induced a new ribonuclease of 16 kDa. All three ribonucleases are acidic enzymes that were inhibited by Zn. The 16 and 17 kDa ribonucleases are inhibited by guanilates. In the genome of common bean, we have identified 13 genes belonging to the T2 ribonuclease family and that are grouped in the 3 classes of T2 ribonucleases. The analysis of the expression of the 3 genes belonging to Class I (PvRNS1 to 3) and the unique gene from Class II (PvRNS4) in radicles showed that PvRNS3 is highly induced under salt stress.


Assuntos
Phaseolus , Ribonucleases , Estresse Salino , Plântula , Ativação Enzimática/fisiologia , Genoma de Planta/genética , Phaseolus/enzimologia , Ribonucleases/genética , Ribonucleases/metabolismo , Plântula/enzimologia
14.
Plants (Basel) ; 9(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024086

RESUMO

Nucleotides are molecules of great importance in plant physiology. In addition to being elementary units of the genetic material, nucleotides are involved in bio-energetic processes, play a role as cofactors, and are also components of secondary metabolites and the hormone cytokinin. The common bean (Phaseolus vulgaris) is a legume that transports the nitrogen fixed in nodules as ureides, compounds synthetized from purine nucleotides. The first step in this pathway is the removal of the 5'-phosphate group by a phosphatase. In this study, a gene that codes for a putative nucleotidase (PvNTD2) has been identified in P. vulgaris. The predicted peptide contains the conserved domains for haloacid dehalogenase-like hydrolase superfamily. The protein has been overexpressed in Escherichia coli, and the purified protein showed molybdate-resistant phosphatase activity with nucleoside monophosphates as substrates, confirming that the identified gene codes for a nucleotidase. The optimum pH for the activity was 7-7.5. The recombinant enzyme did not show special affinity for any particular nucleotide, although the behaviour with AMP was different from that with the other nucleotides. The activity was inhibited by adenosine, and a regulatory role for this nucleoside was proposed. The expression pattern of PvNTD2 shows that it is ubiquitously expressed in all the tissues analysed, with higher expression in nodules of adult plants. The expression was maintained during leaf ontogeny, and it was induced during seedling development. Unlike PvNTD1, another NTD previously described in common bean, the high expression of PvNTD2 was maintained during nodule development, and its possible role in this organ is discussed.

15.
Physiol Plant ; 135(1): 19-28, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19121096

RESUMO

French bean (Phaseolus vulgaris) is a legume that transports most of the atmospheric nitrogen fixed in its nodules to the aerial parts of the plant as ureides. Changes in ureide content and in enzymatic activities involved in their metabolism were identified in the cotyledons and embryonic axes during germination and early seedling development. Accumulation of ureides (ca. 1300 nmol per pair of cotyledons) was observed in the cotyledons of dry seeds. Throughout germination, the total amount of ureides slightly decreased to about 1200 nmol, but increased both in cotyledons and in embryonic axes after radicle emergence. In the axes, the ureides were almost equally distributed in roots, hypocotyls and epicotyls. The pattern of ureide distribution was not affected by the presence of nitrate or sucrose in the media up to 6 days after imbibition. Ureides are synthesized from purines because allopurinol (a xanthine dehydrogenase inhibitor) blocks the increase of ureides. Allantoin and allantoate-degrading activities were detected in French bean dried seeds, whereas no ureidoglycolate-degrading activity was detected. During germination, the levels of the three activities remain unchanged in cotyledons. After radicle emergence, the levels of activities in cotyledons changed. Allantoin-degrading activity increased, allantoate-degrading activity decreased and ureidoglycolate-degrading activity remained undetectable in cotyledons. In developing embryonic axes, the three activities were detected throughout germination and early seedling development. The embryonic axes are able to synthesize ureides, because those compounds accumulated in axes without cotyledons.


Assuntos
Cotilédone/metabolismo , Phaseolus/metabolismo , Plântula/metabolismo , Ureia/análogos & derivados , Ureia/metabolismo , Alantoína/metabolismo , Cotilédone/crescimento & desenvolvimento , Germinação , Nitrogênio/metabolismo , Phaseolus/embriologia , Phaseolus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
16.
Mol Biol Rep ; 36(8): 2249-58, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19130295

RESUMO

A gene encoding a putative asparagine synthetase (AS; EC 6.3.5.4) has been isolated from common bean (Phaseolus vulgaris). A 2.4 kb cDNA clone of this gene (PVAS3) encodes a protein of 570 amino acids with a predicted molecular mass of 64,678 Da, an isoelectric point of 6.45, and a net charge of -5.9 at pH 7.0. The PVAS3 protein sequence conserves all the amino acid residues that are essential for glutamine-dependent AS, and PVAS3 complemented an E. coli asparagine auxotroph, that demonstrates that it encodes a glutamine-dependent AS. PVAS3 displayed significant similarity to other AS. It showed the highest similarity to soybean SAS3 (92.9% identity), rice AS (73.7% identity), Arabidopsis ASN2 (73.2%) and sunflower HAS2 (72.9%). A phylogenetic analysis revealed that PVAS3 belongs to class-II asparagine synthetases. Expression analysis by real-time RT-PCR revealed that PVAS3 is expressed ubiquitously and is not repressed by light.


Assuntos
Aspartato-Amônia Ligase/genética , Genes de Plantas , Phaseolus/enzimologia , Sequência de Aminoácidos , Aspartato-Amônia Ligase/química , Aspartato-Amônia Ligase/metabolismo , Clonagem Molecular/métodos , Escherichia coli/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Phaseolus/genética , Filogenia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Alinhamento de Sequência , Distribuição Tecidual
17.
Plant Physiol Biochem ; 143: 364-374, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31542638

RESUMO

Xanthine dehydrogenase (XDH) is essential for the assimilation of symbiotically fixed nitrogen in ureidic legumes. Uric acid, produced in the reaction catalyzed by XDH, is the precursor of the ureides, allantoin and allantoate, which are the main N-transporting molecules in these plants. XDH and uric acid have been reported to be involved in the response to stress, both in plants and animals. However, the physiological role of XDH under stressful conditions in ureidic legumes remains largely unexplored. In vitro assays showed that Phaseolus vulgaris XDH (PvXDH) can behave as a dehydrogenase or as an oxidase. Therefore, it could potentially protect against oxidative radicals or, in contrast, it could increase their production. In silico analysis of the upstream genomic region of XDH coding gene from P. vulgaris revealed the presence of several stress-related cis-regulatory elements. PvXDH mRNA and enzymatic activity in plants treated with stress-related phytohormones or subjected to dehydration and stressful temperatures showed several fold induction. However, PvXDH activity was in vivo and in vitro inhibited by nitric oxide in leaves but not in nodules. In extracts from RNAi PvXDH silenced nodules, with lower levels of uric acid, XDH activity was inhibited by SNP which indicates that uric acid produced by XDH in the nodules of this ureidic legume could help to protect XDH against the inhibitory effects of nitric oxide.


Assuntos
Óxido Nítrico/metabolismo , Phaseolus/metabolismo , Folhas de Planta/metabolismo , Ácido Úrico/metabolismo , Xantina Desidrogenase/metabolismo , Regulação da Expressão Gênica de Plantas , Phaseolus/genética , Xantina Desidrogenase/genética
18.
FEBS J ; 286(20): 3959-3967, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31495055

RESUMO

Horizontal gene transfer (HGT) is widespread among prokaryotes driving their evolution. In this paper, we review the potential impact in humans of the HGT between prokaryotes living in close association with humans in two scenarios: horizontal transfer in human microbiomes and transfer between microbes living in human managed environments. Although our vision is focused on the possible impact of these transfers in the propagation of antibiotic resistance genes or pathogenicity determinants, we also discuss possible human physiological adaptations via gene transfer between resident and occasional bacteria in the human microbiome.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano , Microbiota/fisiologia , Biodiversidade , Humanos
19.
Plant Physiol Biochem ; 138: 1-8, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30825724

RESUMO

Ureides are nitrogenous compounds with a special function in some legume under nitrogen fixing conditions, the ureidic legumes. In this group, ureides are the predominant nitrogen transport molecule from nodules to the upper part, whereas amidic legumes use amides as nitrogen transport compounds. In this study, the ureide levels have been analysed in seedlings from four ureidic and four amidic legume plants. It has been found that the differentiation among ureide and amide plants already exists in seedlings during early seedling development, with high levels of ureide and allantoinase activity in cotyledons and embryonic axes from ureide plants. Since ureides have been implicated in the response of plant to several stress, total hydrosoluble antioxidant capacity and the levels of several antioxidant activities have been determined and compared among these two legume groups. The total antioxidant capacity did not follow any differential pattern in cotyledons or embryonic axes for the analysed plants. The levels of superoxide dismutase, guaiacol peroxidase and ascorbate peroxidase in both embryonic axes and cotyledons are statistical different between amide and ureide seedlings, whereas the catalase activity was similar among these groups of plants. We discuss than amides and ureides could follow different strategies to protect against oxidation.


Assuntos
Antioxidantes/metabolismo , Cotilédone/metabolismo , Fabaceae/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Fixação de Nitrogênio/fisiologia
20.
Physiol Plant ; 133(4): 736-43, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18384503

RESUMO

The difficulty of assaying asparagine synthetase (AS) (EC 6.3.5.4) activity in roots of soybean has been circumvented by measuring expression of the AS genes. Expression of three soybean asparagine synthetase (SAS) genes (SAS1, SAS2 and SAS3) was observed in roots of non-nodulated soybean plants cultivated on nitrate. Expression of these genes was reduced to very low levels within days after submitting the plants to a N-free medium. The subsequent return to a complete medium (containing nitrate) restored expression of all three AS genes. Roots of nodulated plants, where symbiotic nitrogen fixation was the exclusive source of N (no nitrate present), showed very weak expression of all three AS genes, but on transfer to a nitrate-containing medium, strong expression of these genes was observed within 24 h. In nodules, all three genes were expressed in the absence of nitrate. Under conditions that impair nitrogen fixation (nodules submerged in aerated hydroponics), only SAS1 expression was reduced. However, in the presence of nitrate, an inhibitor of N(2) fixation, SAS1 expression was maintained. High and low expressions of AS genes in the roots were associated with high and low ratios of Asn/Asp transported to the shoot through xylem. It is concluded that nitrate (or one of its assimilatory products) leads to the induction of AS in roots of soybean and that this underlies the variations found in xylem sap Asn/Asp ratios. Regulation of nodule AS expression is quite different from that of the root, but nodule SAS1, at least, appears to involve a product of N assimilation rather than nitrate itself.


Assuntos
Aspartato-Amônia Ligase/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/enzimologia , Glycine max/genética , Nitrogênio/farmacologia , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/enzimologia , Silicatos de Alumínio , Aminoácidos/análise , Aspartato-Amônia Ligase/metabolismo , Northern Blotting , Hidroponia , Nitratos/farmacologia , Nódulos Radiculares de Plantas/genética , Glycine max/efeitos dos fármacos , Xilema/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA