RESUMO
BACKGROUND AND AIMS: Type 1 long QT syndrome (LQT1) is caused by pathogenic variants in the KCNQ1-encoded Kv7.1 potassium channels, which pathologically prolong ventricular action potential duration (APD). Herein, the pathologic phenotype in transgenic LQT1 rabbits is rescued using a novel KCNQ1 suppression-replacement (SupRep) gene therapy. METHODS: KCNQ1-SupRep gene therapy was developed by combining into a single construct a KCNQ1 shRNA (suppression) and an shRNA-immune KCNQ1 cDNA (replacement), packaged into adeno-associated virus serotype 9, and delivered in vivo via an intra-aortic root injection (1E10 vg/kg). To ascertain the efficacy of SupRep, 12-lead electrocardiograms were assessed in adult LQT1 and wild-type (WT) rabbits and patch-clamp experiments were performed on isolated ventricular cardiomyocytes. RESULTS: KCNQ1-SupRep treatment of LQT1 rabbits resulted in significant shortening of the pathologically prolonged QT index (QTi) towards WT levels. Ventricular cardiomyocytes isolated from treated LQT1 rabbits demonstrated pronounced shortening of APD compared to LQT1 controls, leading to levels similar to WT (LQT1-UT vs. LQT1-SupRep, P < .0001, LQT1-SupRep vs. WT, P = ns). Under ß-adrenergic stimulation with isoproterenol, SupRep-treated rabbits demonstrated a WT-like physiological QTi and APD90 behaviour. CONCLUSIONS: This study provides the first animal-model, proof-of-concept gene therapy for correction of LQT1. In LQT1 rabbits, treatment with KCNQ1-SupRep gene therapy normalized the clinical QTi and cellular APD90 to near WT levels both at baseline and after isoproterenol. If similar QT/APD correction can be achieved with intravenous administration of KCNQ1-SupRep gene therapy in LQT1 rabbits, these encouraging data should compel continued development of this gene therapy for patients with LQT1.
Assuntos
Terapia Genética , Canal de Potássio KCNQ1 , Miócitos Cardíacos , Síndrome de Romano-Ward , Animais , Coelhos , Canal de Potássio KCNQ1/genética , Terapia Genética/métodos , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/terapia , Animais Geneticamente Modificados , Potenciais de Ação , Eletrocardiografia , RNA Interferente Pequeno/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Modelos Animais de DoençasRESUMO
Human adverse drug reactions (ADRs), and in vivo nonclinical adverse and nonadverse findings, were identified in 27 biotherapeutic programs and placed into organ categories to determine translation. The sensitivity of detecting human ADRs was 30.8% with a positive predictive value (PPV) of 53.3% for nonclinical adverse findings; sensitivity increased to 67.3% and PPV fell to 35.0% when including nonadverse findings. Nonclinical findings were associated with a greater likelihood of a human ADR in that organ category, especially for adverse findings [positive likelihood ratio (LR+) >10 (lower 95% confidence interval [CI] of >5)]. The specificity and negative predictive value (NPV) were very high (>85%). A lack of nonclinical findings in an organ category was associated with a lower likelihood of a human ADR in that organ category. About 40-50% of human ADRs and nonclinical adverse findings, and about 30% of nonclinical nonadverse findings, were attributed to pharmacology. Slightly more than half of the human ADRs with a translating nonclinical finding had findings in animals that could be considered very similar. Overall, 38% of nonclinical findings translated to a human ADR at the organ category level. When nonclinical findings did not translate to humans, the cause was usually higher exposures or longer dosing in animals. All programs with human ADRs attributed to immunogenicity also had nonclinical adverse or nonadverse findings related to immunogenicity. Overall, nonclinical adverse and nonadverse findings were useful in predicting human ADRs, especially at an organ category level, and the majority of human ADRs were predicted by nonclinical toxicity studies.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Humanos , Valor Preditivo dos TestesRESUMO
Excipients are essential components within drug products that contribute significantly to their overall quality, effectiveness, and safety. There is a lack of global, harmonized guidance relating to the non-clinical testing of novel excipients which is perceived to create uncertainty and strategic risk, potentially hindering innovation and disincentivizing their use. To test these perceptions, the IQ Novel Excipient Working Group surveyed member companies regarding their main concerns and prior experience regarding the non-clinical evaluation of excipients. Of the 19 respondents, 13 provided, collectively, 33 non-clinical program examples supporting the development of novel excipients. Programs were distributed across a range of therapeutic areas and included a variety of drug modalities and administration routes. Package designs were variable, but where possible, employed the use of existing data, supplemented with new toxicology studies as appropriate. Of the programs which had submitted data to regional health authorities, only three received feedback requesting additional studies or that demonstrated differences in regional opinion. In addition, companies provided recommendations on how the current (or new) guidance related to non-clinical excipient evaluation (and other areas, such as Chemistry, Manufacturing, and Controls and databases) may be improved.
Assuntos
Indústria Farmacêutica , Excipientes , Excipientes/toxicidade , Preparações FarmacêuticasRESUMO
Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B; OMIM #252920) is a lethal, pediatric, neuropathic, autosomal recessive, and lysosomal storage disease with no approved therapy. Patients are deficient in the activity of N-acetyl-alpha-glucosaminidase (NAGLU; EC 3.2.150), necessary for normal lysosomal degradation of the glycosaminoglycan heparan sulfate (HS). Tralesinidase alfa (TA), a fusion protein comprised of recombinant human NAGLU and a modified human insulin-like growth factor 2, is in development as an enzyme replacement therapy that is administered via intracerebroventricular (ICV) infusion, thus circumventing the blood brain barrier. Previous studies have confirmed ICV infusion results in widespread distribution of TA throughout the brains of mice and nonhuman primates. We assessed the long-term tolerability, pharmacology, and clinical efficacy of TA in a canine model of MPS IIIB over a 20-month study. Long-term administration of TA was well tolerated as compared with administration of vehicle. TA was widely distributed across brain regions, which was confirmed in a follow-up 8-week pharmacokinetic/pharmacodynamic study. MPS IIIB dogs treated for up to 20 months had near-normal levels of HS and nonreducing ends of HS in cerebrospinal fluid and central nervous system (CNS) tissues. TA-treated MPS IIIB dogs performed better on cognitive tests and had improved CNS pathology and decreased cerebellar volume loss relative to vehicle-treated MPS IIIB dogs. These findings demonstrate the ability of TA to prevent or limit the biochemical, pathologic, and cognitive manifestations of canine MPS IIIB disease, thus providing support of its potential long-term tolerability and efficacy in MPS IIIB subjects. SIGNIFICANCE STATEMENT: This work illustrates the efficacy and tolerability of tralesinidase alfa as a potential therapeutic for patients with mucopolysaccharidosis type IIIB (MPS IIIB) by documenting that administration to the central nervous system of MPS IIIB dogs prevents the accumulation of disease-associated glycosaminoglycans in lysosomes, hepatomegaly, cerebellar atrophy, and cognitive decline.
Assuntos
Mucopolissacaridose III , Animais , Encéfalo/metabolismo , Criança , Modelos Animais de Doenças , Cães , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/uso terapêutico , Humanos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologiaRESUMO
COVID-19 is a potentially fatal infection caused by the SARS-CoV-2 virus. The SARS-CoV-2 3CL protease (Mpro) is a viral enzyme essential for replication and is the target for nirmatrelvir. Paxlovid (nirmatrelvir co-administered with the pharmacokinetic enhancer ritonavir) showed efficacy in COVID-19 patients at high risk of progressing to hospitalization and/or death. Nonclinical safety studies with nirmatrelvir are essential in informing benefit-risk of Paxlovid and were conducted to support clinical development. In vivo safety pharmacology assessments included a nervous system/pulmonary study in rats and a cardiovascular study in telemetered monkeys. Potential toxicities were assessed in repeat dose studies of up to 1 month in rats and monkeys. Nirmatrelvir administration (1,000 mg/kg, p.o.) to male rats produced transient increases in locomotor activity and respiratory rate but did not affect behavioral endpoints in the functional observational battery. Cardiovascular effects in monkeys were limited to transient increases in blood pressure and decreases in heart rate, observed only at the highest dose tested (75 mg/kg per dose b.i.d; p.o.). Nirmatrelvir did not prolong QTc-interval or induce arrhythmias. There were no adverse findings in repeat dose toxicity studies up to 1 month in rats (up to 1,000 mg/kg daily, p.o.) or monkeys (up to 600 mg/kg daily, p.o.). Nonadverse, reversible clinical pathology findings without clinical or microscopic correlates included prolonged coagulation times at ≥60 mg/kg in rats and increases in transaminases at 600 mg/kg in monkeys. The safety pharmacology and nonclinical toxicity profiles of nirmatrelvir support clinical development and use of Paxlovid for treatment of COVID-19.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Animais , Antivirais/efeitos adversos , Masculino , RatosRESUMO
Globoid cell leukodystrophy (GLD, Krabbe disease, Krabbe's disease) is caused by genetic mutations in the gene encoding, galactosylceramidase (GALC). Deficiency of this enzyme results in central and peripheral nervous system pathology, and is characterized by loss of myelin and an infiltration of globoid cells. The canine model of GLD provides a translational model which faithfully recapitulates much of the human disease pathology. Targeted lipidomic analysis was conducted in serum and cerebrospinal fluid (CSF) over the lifetime of GLD affected and normal canines, and in brain tissue at humane endpoint to better understand disease progression and identify potential biomarkers of disease. Psychosine, a substrate of GALC and primary contributor to the pathology in GLD, was observed to be significantly elevated in the serum and CSF by 2 or 4 weeks of age, respectively, and steadily increased over the lifetime of affected animals. Importantly, psychosine concentration strongly correlated with disease severity. Galactosylceramide, glucosylceramide, and lactosylceramide were also found to be elevated in the CSF of affected animals and increased with age. Psychosine and galactosylceramide were found to be significantly increased in brain tissue at humane endpoint. This study identified several biomarkers which may be useful in the development of therapeutics for GLD.
Assuntos
Doenças do Cão/líquido cefalorraquidiano , Galactosilceramidas/sangue , Galactosilceramidas/líquido cefalorraquidiano , Leucodistrofia de Células Globoides/veterinária , Psicosina/líquido cefalorraquidiano , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Doenças do Cão/sangue , Doenças do Cão/patologia , Cães , Feminino , Leucodistrofia de Células Globoides/sangue , Leucodistrofia de Células Globoides/líquido cefalorraquidiano , Leucodistrofia de Células Globoides/patologia , Masculino , Psicosina/sangueRESUMO
Using an expanded genetic code, antibodies with site-specifically incorporated nonnative amino acids were produced in stable cell lines derived from a CHO cell line with titers over 1 g/L. Using anti-5T4 and anti-Her2 antibodies as model systems, site-specific antibody drug conjugates (NDCs) were produced, via oxime bond formation between ketones on the side chain of the incorporated nonnative amino acid and hydroxylamine functionalized monomethyl auristatin D with either protease-cleavable or noncleavable linkers. When noncleavable linkers were used, these conjugates were highly stable and displayed improved in vitro efficacy as well as in vivo efficacy and pharmacokinetic stability in rodent models relative to conventional antibody drug conjugates conjugated through either engineered surface-exposed or reduced interchain disulfide bond cysteine residues. The advantages of the oxime-bonded, site-specific NDCs were even more apparent when low-antigen-expressing (2+) target cell lines were used in the comparative studies. NDCs generated with protease-cleavable linkers demonstrated that the site of conjugation had a significant impact on the stability of these rationally designed prodrug linkers. In a single-dose rat toxicology study, a site-specific anti-Her2 NDC was well tolerated at dose levels up to 90 mg/kg. These experiments support the notion that chemically defined antibody conjugates can be synthesized in commercially relevant yields and can lead to antibody drug conjugates with improved properties relative to the heterogeneous conjugates formed by nonspecific chemical modification.
Assuntos
Anticorpos/metabolismo , Imunoconjugados/metabolismo , Preparações Farmacêuticas/síntese química , Engenharia de Proteínas/métodos , Animais , Anticorpos/sangue , Anticorpos/química , Anticorpos/toxicidade , Técnicas de Cultura Celular por Lotes , Células CHO , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cricetinae , Cricetulus , Cisteína/metabolismo , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Imunoconjugados/toxicidade , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/química , Estabilidade Proteica/efeitos dos fármacos , RatosRESUMO
Antibody-drug conjugates (ADCs) allow selective targeting of cytotoxic drugs to cancer cells presenting tumor-associated surface markers, thereby minimizing systemic toxicity. Traditionally, the drug is conjugated nonselectively to cysteine or lysine residues in the antibody. However, these strategies often lead to heterogeneous products, which make optimization of the biological, physical, and pharmacological properties of an ADC challenging. Here we demonstrate the use of genetically encoded unnatural amino acids with orthogonal chemical reactivity to synthesize homogeneous ADCs with precise control of conjugation site and stoichiometry. p-Acetylphenylalanine was site-specifically incorporated into an anti-Her2 antibody Fab fragment and full-length IgG in Escherichia coli and mammalian cells, respectively. The mutant protein was selectively and efficiently conjugated to an auristatin derivative through a stable oxime linkage. The resulting conjugates demonstrated excellent pharmacokinetics, potent in vitro cytotoxic activity against Her2(+) cancer cells, and complete tumor regression in rodent xenograft treatment models. The synthesis and characterization of homogeneous ADCs with medicinal chemistry-like control over macromolecular structure should facilitate the optimization of ADCs for a host of therapeutic uses.
Assuntos
Aminoácidos/química , Anticorpos Monoclonais Humanizados/química , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/química , Engenharia de Proteínas/métodos , Aminobenzoatos/química , Animais , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Feminino , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Imunoglobulina G/química , Camundongos , Camundongos SCID , Oligopeptídeos/química , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , TrastuzumabRESUMO
Mucopolysaccharidosis Type IIIB (MPS IIIB) is an ultrarare, fatal pediatric disease with no approved therapy. It is caused by mutations in the gene encoding for lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). Tralesinidase alfa (TA) is a fusion protein comprised of recombinant NAGLU and a modified human insulin-like growth factor 2 that is being developed as an enzyme replacement therapy for MPS IIIB. Since MPS IIIB is a pediatric disease the safety/toxicity, pharmacokinetics and biodistribution of TA were evaluated in juvenile non-human primates that were administered up to 5 weekly intracerebroventricular (ICV) or single intravenous (IV) infusions of TA. TA administered by ICV slow-, ICV isovolumetric bolus- or IV-infusion was well-tolerated, and no effects were observed on clinical observations, electrocardiographic or ophthalmologic parameters, or respiratory rates. The drug-related changes observed were limited to increased cell infiltrates in the CSF and along the ICV catheter track after ICV administration. These findings were not associated with functional changes and are associated with the use of ICV catheters. The CSF PK profiles were consistent across all conditions tested and TA distributed widely in the CNS after ICV administration. Anti-drug antibodies were observed but did not appear to significantly affect the exposure to TA. Correlations between TA concentrations in plasma and brain regions in direct contact with the cisterna magna suggest glymphatic drainage may be responsible for clearance of TA from the CNS. The data support the administration of TA by isovolumetric bolus ICV infusion to pediatric patients with MPS IIIB.
RESUMO
The identification of leptin as a mediator of body weight regulation provided much initial excitement for the treatment of obesity. Unfortunately, leptin monotherapy is insufficient in reversing obesity in rodents or humans. Recent findings suggest that amylin is able to restore leptin sensitivity and when used in combination with leptin enhances body weight loss in obese rodents and humans. However, as the uniqueness of this combination therapy remains unclear, we assessed whether co-administration of leptin with other weight loss-inducing hormones equally restores leptin responsiveness in diet-induced obese (DIO) mice. Accordingly, we report here the design and characterization of a series of site-specifically enhanced leptin analogs of high potency and sustained action that, when administered in combination with exendin-4 or fibroblast growth factor 21 (FGF21), restores leptin responsiveness in DIO mice after an initial body weight loss of 30%. Using either combination, body weight loss was enhanced compared with either exendin-4 or FGF21 monotherapy, and leptin alone was sufficient to maintain the reduced body weight. In contrast, leptin monotherapy proved ineffective when identical weight loss was induced by caloric restriction alone over a comparable time. Accordingly, we find that a hypothalamic counter-regulatory response to weight loss, assessed using changes in hypothalamic agouti related peptide (AgRP) levels, is triggered by caloric restriction, but blunted by treatment with exendin-4. We conclude that leptin re-sensitization requires pharmacotherapy but does not appear to be restricted to a unique signaling pathway. Our findings provide preclinical evidence that high activity, long-acting leptin analogs are additively efficacious when used in combination with other weight-lowering agents.
Assuntos
Dieta/efeitos adversos , Fatores de Crescimento de Fibroblastos/farmacologia , Leptina/análogos & derivados , Leptina/farmacologia , Obesidade/metabolismo , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Peso Corporal , Combinação de Medicamentos , Exenatida , Fatores de Crescimento de Fibroblastos/administração & dosagem , Leptina/administração & dosagem , Leptina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Moleculares , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Peptídeos/administração & dosagem , Polietilenoglicóis/química , Peçonhas/administração & dosagemRESUMO
Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B) is an autosomal recessive lysosomal storage disorder caused by the deficiency of alpha-N-acetylglucosaminidase activity, leading to increased levels of nondegraded heparan sulfate (HS). A mouse model has been useful to evaluate novel treatments for MPS IIIB, but has limitations. In this study, we evaluated the naturally occurring canine model of MPS IIIB for the onset and progression of biochemical and neuropathological changes during the preclinical stages (onset approximately 24-30 months of age) of canine MPS IIIB disease. Even by 1 month of age, MPS IIIB dogs had elevated HS levels in brain and cerebrospinal fluid. Analysis of histopathology of several disease-relevant regions of the forebrain demonstrated progressive lysosomal storage and microglial activation despite a lack of cerebrocortical atrophy in the oldest animals studied. More pronounced histopathology changes were detected in the cerebellum, where progressive lysosomal storage, astrocytosis and microglial activation were observed. Microglial activation was particularly prominent in cerebellar white matter and within the deep cerebellar nuclei, where neuron loss also occurred. The findings in this study will form the basis of future assessments of therapeutic efficacy in this large animal disease model.
Assuntos
Acetilglucosaminidase/deficiência , Cerebelo/patologia , Córtex Cerebral/patologia , Doenças do Cão/patologia , Mucopolissacaridose III/patologia , Prosencéfalo/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Doenças do Cão/metabolismo , Cães , Feminino , Heparitina Sulfato/metabolismo , Histocitoquímica , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Mucopolissacaridose III/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Prosencéfalo/metabolismo , Substância Branca/metabolismo , Substância Branca/patologiaRESUMO
BMN 250 is being developed as enzyme replacement therapy for Sanfilippo type B, a primarily neurological rare disease, in which patients have deficient lysosomal alpha-N-acetylglucosaminidase (NAGLU) enzyme activity. BMN 250 is taken up in target cells by the cation-independent mannose 6-phosphate receptor (CI-MPR, insulin-like growth factor 2 receptor), which then facilitates transit to the lysosome. BMN 250 is dosed directly into the central nervous system via the intracerebroventricular (ICV) route, and the objective of this work was to compare systemic intravenous (IV) and ICV delivery of BMN 250 to confirm the value of ICV dosing. We first assess the ability of enzyme to cross a potentially compromised blood-brain barrier in the Naglu-/- mouse model and then assess the potential for CI-MPR to be employed for receptor-mediated transport across the blood-brain barrier. In wild-type and Naglu-/- mice, CI-MPR expression in brain vasculature is high during the neonatal period but virtually absent by adolescence. In contrast, CI-MPR remains expressed through adolescence in non-affected non-human primate and human brain vasculature. Combined results from IV administration of BMN 250 in Naglu-/- mice and IV and ICV administration in healthy juvenile non-human primates suggest a limitation to therapeutic benefit from IV administration because enzyme distribution is restricted to brain vascular endothelial cells: enzyme does not reach target neuronal cells following IV administration, and pharmacological response following IV administration is likely restricted to clearance of substrate in endothelial cells. In contrast, ICV administration enables central nervous system enzyme replacement with biodistribution to target cells.
Assuntos
Acetilglucosaminidase/administração & dosagem , Acetilglucosaminidase/genética , Barreira Hematoencefálica/química , Fator de Crescimento Insulin-Like II/administração & dosagem , Mucopolissacaridose III/tratamento farmacológico , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Acetilglucosaminidase/uso terapêutico , Administração Intravenosa , Animais , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Feminino , Infusões Intraventriculares , Fator de Crescimento Insulin-Like II/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Mucopolissacaridose III/genética , Primatas , Proteínas Recombinantes de Fusão/uso terapêutico , Pesquisa Translacional BiomédicaAssuntos
Receptores de Folato com Âncoras de GPI/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Complexo CD3/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Ácido Fólico/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imunoterapia , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Ratos , Ratos Sprague-Dawley , Linfócitos T Citotóxicos/citologiaRESUMO
We recently reported restoration of leptin responsiveness in diet-induced obese (DIO) mice using a pharmacologically optimized, polyethylene-glycolated (PEG)-leptin analog in combination with exendin-4 or FGF21. However, the return of leptin action required discontinuation of high-fat diet (HFD) exposure. Here we assess whether a single peptide possessing balanced coagonism at the glucagon-like peptide 1 (GLP-1) and glucagon receptors can restore leptin responsiveness in DIO mice maintained on a HFD. DIO mice were treated with PEG-GLP-1/glucagon (30 nmol/kg every fourth day) to induce an â¼15% body weight loss, upon which they were randomized to continue PEG-GLP-1/glucagon therapy or reassigned to receive supplemental daily PEG-leptin (185 nmol/kg/day). The addition of PEG-leptin to PEG-GLP-1/glucagon resulted in an â¼18% greater weight loss as compared with PEG-GLP-1/glucagon alone and was accompanied by further decreases in food intake and improved glucose and lipid metabolism. The beneficial effect of PEG-leptin supplementation occurred after an initial body weight loss similar to what we previously reported following reduced dietary fat along with PEG-leptin and exendin-4 or FGF21 cotreatment. In summary, we report that GLP-1/glucagon coagonism restores leptin responsiveness in mice maintained on a HFD, thus emphasizing the translational value of this polypharmacotherapy for the treatment of obesity and diabetes.
Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Leptina/agonistas , Obesidade/tratamento farmacológico , Receptores de Glucagon/agonistas , Animais , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Glucagon/agonistas , Glucagon/uso terapêutico , Leptina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Polietilenoglicóis/uso terapêutico , Redução de PesoRESUMO
Antibody drug conjugates (ADCs) are monoclonal antibodies designed to deliver a cytotoxic drug selectively to antigen expressing cells. Several components of an ADC including the selection of the antibody, the linker, the cytotoxic drug payload and the site of attachment used to attach the drug to the antibody are critical to the activity and development of the ADC. The cytotoxic drugs or payloads used to make ADCs are typically conjugated to the antibody through cysteine or lysine residues. This results in ADCs that have a heterogeneous number of drugs per antibody. The number of drugs per antibody commonly referred to as the drug to antibody ratio (DAR), can vary between 0 and 8 drugs for a IgG1 antibody. Antibodies with 0 drugs are ineffective and compete with the ADC for binding to the antigen expressing cells. Antibodies with 8 drugs per antibody have reduced in vivo stability, which may contribute to non target related toxicities. In these studies we incorporated a non-natural amino acid, para acetyl phenylalanine, at two unique sites within an antibody against Her2/neu. We covalently attached a cytotoxic drug to these sites to form an ADC which contains two drugs per antibody. We report the results from the first direct preclinical comparison of a site specific non-natural amino acid anti-Her2 ADC and a cysteine conjugated anti-Her2 ADC. We report that the site specific non-natural amino acid anti-Her2 ADCs have superior in vitro serum stability and preclinical toxicology profile in rats as compared to the cysteine conjugated anti-Her2 ADCs. We also demonstrate that the site specific non-natural amino acid anti-Her2 ADCs maintain their in vitro potency and in vivo efficacy against Her2 expressing human tumor cell lines. Our data suggests that site specific non-natural amino acid ADCs may have a superior therapeutic window than cysteine conjugated ADCs.
Assuntos
Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Cisteína/química , Imunoconjugados/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/sangue , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Masculino , Camundongos , Ratos , Receptor ErbB-2/metabolismo , Albumina Sérica/metabolismo , Especificidade por Substrato , Trastuzumab , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: The quality of bioanalytical data is dependent upon selective, sensitive, and reproducible analytical methods. With evolving technologies available, bioanalytical scientists must assess which is most appropriate for their molecule through proper method validation. For an early stage PEGylated insulin program, the characteristics of four platforms, ELISA, ECL, Gyrolab, and LC-MS/MS, were evaluated using fit-for-purpose method development and validation, while also evaluating costs. METHOD: Methods selected for validation required acceptable performance based on satisfaction of a priori criteria prior to proceeding to subsequent stages of validation. LBA pre-validation included reagent selection, evaluation of matrix interference, and range determination. LC-MS/MS pre-validation included selection of a signature peptide; optimization of sample preparation, HPLC, and LC-MS/MS conditions; and calibration range determination. Pre-study validation tested accuracy and precision (mean bias criteria±30%; precision≤30%). Pharmacokinetic (PK) parameters were estimated for an in vivo study with WinNonlin noncompartmental analysis. Statistics were performed with JMP using ANOVA and Tukey-Kramer post hoc analysis. A cost analysis was performed for a 200-sample PK study using the methods from this study. RESULTS: All platforms, except Gyrolab, were taken through validation. However, a typical Gyrolab method was included for the cost analysis. Ranges for the ELISA, ECLA, and LC-MS/MS were 8.52-75, 2.09-125, and 100-1000 ng/mL, respectively, and accuracy and precision fell within a priori criteria. PK samples were analyzed in the 3 validated methods. PK profiles and parameters are similar for all methods, except LC-MS/MS, which differed at t=24h and with AUC0-24. Further investigation into this difference is warranted. The cost analysis identified the Gyrolab platform as the most expensive and ELISA as the least expensive, with method specific consumables attributing significantly to costs. CONCLUSIONS: ECLA had a larger dynamic range and sensitivity, allowing accurate assessment of PK parameters. Although this method was more expensive than the ELISA, it was the most appropriate for the early stage PEGylated insulin program. While this case study is specific to PEGylated human insulin, it highlights the importance of evaluating and selecting the most appropriate platform for bioanalysis during drug development.
Assuntos
Cromatografia Líquida/métodos , Eletroquímica/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Insulina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/economia , Análise Custo-Benefício , Eletroquímica/economia , Ensaio de Imunoadsorção Enzimática/economia , Humanos , Insulina/análise , Luminescência , Polietilenoglicóis/análise , Controle de Qualidade , Padrões de Referência , Espectrometria de Massas em Tandem/economiaRESUMO
Fibroblast growth factor 21 (FGF21) mitigates many of the pathogenic features of type 2 diabetes, despite a short circulating half-life. PEGylation is a proven approach to prolonging the duration of action while enhancing biophysical solubility and stability. However, in the absence of a specific protein PEGylation site, chemical conjugation is inherently heterogeneous and commonly leads to dramatic loss in bioactivity. This work illustrates a novel means of specific PEGylation, producing FGF21 analogs with high specific activity and salutary biological activities. Using homology modeling and structure-based design, specific sites were chosen in human FGF21 for site-specific PEGylation to ensure that receptor binding regions were preserved. The in vitro activity of the PEGylated FGF21 ana-logs corresponded with the site of PEG placement within the binding model. Site-specific PEGylated analogs demonstrated dramatically increased circulating half-life and enhanced efficacy in db/db mice. Twice-weekly dosing of an optimal FGF21 analog reduced blood glucose, plasma lipids, liver triglycerides, and plasma glucagon and enhanced pancreatic insulin content, islet number, and glucose-dependent insulin secretion. Restoration of insulin sensitivity was demonstrated by the enhanced ability of insulin to induce Akt/protein kinase B phosphorylation in liver, muscle, and adipose tissues. PEGylation of human FGF21 at a specific and preferred site confers superior metabolic pharmacology.