Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Sports Sci ; 41(1): 36-44, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36975046

RESUMO

The use of marker-less methods to automatically obtain kinematics of movement is expanding but validity to high-velocity tasks such as cycling with the presence of the bicycle on the field of view is needed when standard video footage is obtained. The purpose of this study was to assess if pre-trained neural networks are valid for calculations of lower limb joint kinematics during cycling. Motion of twenty-six cyclists pedalling on a cycle trainer was captured by a video camera capturing frames from the sagittal plane whilst reflective markers were attached to their lower limb. The marker-tracking method was compared to two established deep learning-based approaches (Microsoft Research Asia-MSRA and OpenPose) to estimate hip, knee and ankle joint angles. Poor to moderate agreement was found for both methods, with OpenPose differing from the criterion by 4-8° for the hip and knee joints. Larger errors were observed for the ankle joint (15-22°) but no significant differences between methods throughout the crank cycle when assessed using Statistical Parametric Mapping were observed for any of the joints. OpenPose presented stronger agreement with marker-tracking (criterion) than the MSRA for the hip and knee joints but resulted in poor agreement for the ankle joint.


Assuntos
Ciclismo , Extremidade Inferior , Humanos , Articulação do Joelho , , Articulação do Tornozelo , Fenômenos Biomecânicos , Redes Neurais de Computação
2.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062507

RESUMO

Pollution in the form of litter in the natural environment is one of the great challenges of our times. Automated litter detection can help assess waste occurrences in the environment. Different machine learning solutions have been explored to develop litter detection tools, thereby supporting research, citizen science, and volunteer clean-up initiatives. However, to the best of our knowledge, no work has investigated the performance of state-of-the-art deep learning object detection approaches in the context of litter detection. In particular, no studies have focused on the assessment of those methods aiming their use in devices with low processing capabilities, e.g., mobile phones, typically employed in citizen science activities. In this paper, we fill this literature gap. We performed a comparative study involving state-of-the-art CNN architectures (e.g., Faster RCNN, Mask-RCNN, EfficientDet, RetinaNet and YOLO-v5), two litter image datasets and a smartphone. We also introduce a new dataset for litter detection, named PlastOPol, composed of 2418 images and 5300 annotations. The experimental results demonstrate that object detectors based on the YOLO family are promising for the construction of litter detection solutions, with superior performance in terms of detection accuracy, processing time, and memory footprint.


Assuntos
Ciência do Cidadão , Aprendizado Profundo , Humanos , Aprendizado de Máquina , Smartphone
3.
Sensors (Basel) ; 20(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635446

RESUMO

Energy and storage restrictions are relevant variables that software applications should be concerned about when running in low-power environments. In particular, computer vision (CV) applications exemplify well that concern, since conventional uniform image sensors typically capture large amounts of data to be further handled by the appropriate CV algorithms. Moreover, much of the acquired data are often redundant and outside of the application's interest, which leads to unnecessary processing and energy spending. In the literature, techniques for sensing and re-sampling images in non-uniform fashions have emerged to cope with these problems. In this study, we propose Application-Oriented Retinal Image Models that define a space-variant configuration of uniform images and contemplate requirements of energy consumption and storage footprints for CV applications. We hypothesize that our models might decrease energy consumption in CV tasks. Moreover, we show how to create the models and validate their use in a face detection/recognition application, evidencing the compromise between storage, energy, and accuracy.

4.
PLoS One ; 19(5): e0304139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814958

RESUMO

The present study aimed to assess the use of technical-tactical variables and machine learning (ML) classifiers in the automatic classification of the passing difficulty (DP) level in soccer matches and to illustrate the use of the model with the best performance to distinguish the best passing players. We compared eight ML classifiers according to their accuracy performance in classifying passing events using 35 technical-tactical variables based on spatiotemporal data. The Support Vector Machine (SVM) algorithm achieved a balanced accuracy of 0.70 ± 0.04%, considering a multi-class classification. Next, we illustrate the use of the best-performing classifier in the assessment of players. In our study, 2,522 pass actions were classified by the SVM algorithm as low (53.9%), medium (23.6%), and high difficulty passes (22.5%). Furthermore, we used successful rates in low-DP, medium-DP, and high-DP as inputs for principal component analysis (PCA). The first principal component (PC1) showed a higher correlation with high-DP (0.80), followed by medium-DP (0.73), and low-DP accuracy (0.24). The PC1 scores were used to rank the best passing players. This information can be a very rich performance indication by ranking the best passing players and teams and can be applied in offensive sequences analysis and talent identification.


Assuntos
Desempenho Atlético , Aprendizado de Máquina , Futebol , Máquina de Vetores de Suporte , Humanos , Desempenho Atlético/classificação , Análise de Componente Principal , Algoritmos
5.
Front Neurosci ; 18: 1340345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445254

RESUMO

The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.

6.
Res Q Exerc Sport ; 94(4): 905-912, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35575754

RESUMO

Purpose: With the increased access to neural networks trained to estimate body segments from images and videos, this study assessed the validity of some of these networks in enabling the assessment of body position on the bicycle. Methods: Fourteen cyclists pedaled stationarily in one session on their own bicycles while video was recorded from their sagittal plane. Reflective markers attached to key bony landmarks were used to manually digitize joint angles at two positions of the crank (3 o'clock and 6 o'clock) extracted from the videos (Reference method). These angles were compared to measurements taken from videos generated by two deep learning-based approaches designed to automatically estimate human joints (Microsoft Research Asia-MSRA and OpenPose). Results: Mean bias for OpenPose ranged between 0.03° and 1.81°, while the MSRA method presented errors between 2.29° and 12.15°. Correlation coefficients were stronger for OpenPose than for the MSRA method in relation to the Reference method for the torso (r = 0.94 vs. 0.92), hip (r = 0.69 vs. 0.60), knee (r = 0.80 vs. 0.71), and ankle (r = 0.23 vs. 0.20). Conclusion: OpenPose presented better accuracy than the MSRA method in determining body position on the bicycle, but both methods seem comparable in assessing implications from changes in bicycle configuration.


Assuntos
Ciclismo , Extremidade Inferior , Humanos , Articulação do Joelho , Joelho , Redes Neurais de Computação , Fenômenos Biomecânicos
7.
PLoS One ; 18(1): e0265372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652409

RESUMO

Sports sciences are increasingly data-intensive nowadays since computational tools can extract information from large amounts of data and derive insights from athlete performances during the competition. This paper addresses a performance prediction problem in soccer, a popular collective sport modality played by two teams competing against each other in the same field. In a soccer game, teams score points by placing the ball into the opponent's goal and the winner is the team with the highest count of goals. Retaining possession of the ball is one key to success, but it is not enough since a team needs to score to achieve victory, which requires an offensive toward the opponent's goal. The focus of this work is to determine if analyzing the first five seconds after the control of the ball is taken by one of the teams provides enough information to determine whether the ball will reach the final quarter of the soccer field, therefore creating a goal-scoring chance. By doing so, we can further investigate which conditions increase strategic leverage. Our approach comprises modeling players' interactions as graph structures and extracting metrics from these structures. These metrics, when combined, form time series that we encode in two-dimensional representations of visual rhythms, allowing feature extraction through deep convolutional networks, coupled with a classifier to predict the outcome (whether the final quarter of the field is reached). The results indicate that offensive play near the adversary penalty area can be predicted by looking at the first five seconds. Finally, the explainability of our models reveals the main metrics along with its contributions for the final inference result, which corroborates other studies found in the literature for soccer match analysis.


Assuntos
Desempenho Atlético , Futebol , Humanos , Logro , Fatores de Tempo
8.
PLoS One ; 18(3): e0282398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862737

RESUMO

Cardiopulmonary exercise testing (CPET) is a non-invasive approach to measure the maximum oxygen uptake ([Formula: see text]), which is an index to assess cardiovascular fitness (CF). However, CPET is not available to all populations and cannot be obtained continuously. Thus, wearable sensors are associated with machine learning (ML) algorithms to investigate CF. Therefore, this study aimed to predict CF by using ML algorithms using data obtained by wearable technologies. For this purpose, 43 volunteers with different levels of aerobic power, who wore a wearable device to collect unobtrusive data for 7 days, were evaluated by CPET. Eleven inputs (sex, age, weight, height, and body mass index, breathing rate, minute ventilation, total hip acceleration, walking cadence, heart rate, and tidal volume) were used to predict the [Formula: see text] by support vector regression (SVR). Afterward, the SHapley Additive exPlanations (SHAP) method was used to explain their results. SVR was able to predict the CF, and the SHAP method showed that the inputs related to hemodynamic and anthropometric domains were the most important ones to predict the CF. Therefore, we conclude that the cardiovascular fitness can be predicted by wearable technologies associated with machine learning during unsupervised activities of daily living.


Assuntos
Atividades Cotidianas , Sistema Cardiovascular , Humanos , Consumo de Oxigênio , Oxigênio , Aprendizado de Máquina
9.
Sci Med Footb ; 6(4): 483-493, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36412184

RESUMO

INTRODUCTION: Usually, the players' or teams' efficiency to perform passes is measured in terms of accuracy. The degree of difficulty of this action has been overlooked in the literature. OBJECTIVES: The present study aimed to classify the degree of passing difficulty in soccer matches and to identify and to discuss the variables that most explain the passing difficulty using spatiotemporal data. RESULTS: The data used corresponds to 2,856 passes and 32 independent variables. The Fisher Discriminant Analysis presented 72.0% of the original grouped cases classified correctly. The passes analyzed were classified as low (56.5%), medium (22.6%), and high difficulty (20.9%), and we identified 16 variables that best explain the degree of passing difficulty related to the passing receiver, ball trajectory, pitch position and passing player. CONCLUSIONS: The merit and ability of the player to perform passes with high difficulty should be valued and can be used to rank the best players and teams.In addition, the highlighted variables should be looked carefully by coaches when analyzing profiles, strengths and weaknesses of players and teams, and talent identification context. PRACTICAL IMPLICATIONS: The values found for each variable can be used as a reference for planning training, such as small side games, and in future research.


Assuntos
Desempenho Atlético , Futebol , Aptidão , Análise Discriminante , Coleta de Dados
10.
Artigo em Inglês | MEDLINE | ID: mdl-35162201

RESUMO

Kicking is a fundamental skill in soccer that often contributes to match outcomes. Lower limb movement features (e.g., joint position and velocity) are determinants of kick performance. However, obtaining kicking kinematics under field conditions generally requires time-consuming manual tracking. The current study aimed to compare a contemporary markerless automatic motion estimation algorithm (OpenPose) with manual digitisation (DVIDEOW software) in obtaining on-field kicking kinematic parameters. An experimental dataset of under-17 players from all outfield positions was used. Kick attempts were performed in an official pitch against a goalkeeper. Four digital video cameras were used to record full-body motion during support and ball contact phases of each kick. Three-dimensional positions of hip, knee, ankle, toe and foot centre-of-mass (CMfoot) generally showed no significant differences when computed by automatic as compared to manual tracking (whole kicking movement cycle), while only z-coordinates of knee and calcaneus markers at specific points differed between methods. The resulting time-series matrices of positions (r2 = 0.94) and velocity signals (r2 = 0.68) were largely associated (all p < 0.01). The mean absolute error of OpenPose motion tracking was 3.49 cm for determining positions (ranging from 2.78 cm (CMfoot) to 4.13 cm (dominant hip)) and 1.29 m/s for calculating joint velocity (0.95 m/s (knee) to 1.50 m/s (non-dominant hip)) as compared to reference measures by manual digitisation. Angular range-of-motion showed significant correlations between methods for the ankle (r = 0.59, p < 0.01, large) and knee joint displacements (r = 0.84, p < 0.001, very large) but not in the hip (r = 0.04, p = 0.85, unclear). Markerless motion tracking (OpenPose) can help to successfully obtain some lower limb position, velocity, and joint angular outputs during kicks performed in a naturally occurring environment.


Assuntos
Futebol , Fenômenos Biomecânicos , Humanos , Joelho , Extremidade Inferior , Movimento
11.
Sci Rep ; 12(1): 1148, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064131

RESUMO

This study investigated the 30-days altitude training (2500 m, LHTH-live and training high) on hematological responses and aerobic-anaerobic performances parameters of high-level Paralympic athletes. Aerobic capacity was assessed by 3000 m run, and anaerobic variables (velocity, force and mechanical power) by a maximal 30-s semi-tethered running test (AO30). These assessments were carried out at low altitude before (PRE) and after LHTH (5-6 and 15-16 days, POST1 and POST2, respectively). During LHTH, hematological analyzes were performed on days 1, 12, 20 and 30. After LHTH, aerobic performance decreased 1.7% in POST1, but showed an amazing increase in POST2 (15.4 s reduction in the 3000 m test, 2.8%). Regarding anaerobic parameters, athletes showed a reduction in velocity, force and power in POST1, but velocity and power returned to their initial conditions in POST2. In addition, all participants had higher hemoglobin (Hb) values at the end of LHTH (30 days), but at POST2 these results were close to those of PRE. The centrality metrics obtained by complex networks (pondered degree, pagerank and betweenness) in the PRE and POST2 scenarios highlighted hemoglobin, hematocrit (Hct) and minimum force, velocity and power, suggesting these variables on the way to increasing endurance performance. The Jaccard's distance metrics showed dissimilarity between the PRE and POST2 graphs, and Hb and Hct as more prominent nodes for all centrality metrics. These results indicate that adaptive process from LHTH was highlighted by the complex networks, which can help understanding the better aerobic performance at low altitude after 16 days in Paralympic athletes.


Assuntos
Aclimatação/fisiologia , Desempenho Atlético/fisiologia , Hemoglobinas/metabolismo , Hipóxia/metabolismo , Paratletas , Adulto , Altitude , Anaerobiose/fisiologia , Brasil , Tolerância ao Exercício/fisiologia , Hemoglobinas/análise , Humanos , Hipóxia/sangue , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física , Corrida/fisiologia
12.
Biology (Basel) ; 11(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36101345

RESUMO

Although several studies have focused on the adaptations provided by inspiratory muscle (IM) training on physical demands, the warm-up or pre-activation (PA) of these muscles alone appears to generate positive effects on physiological responses and performance. This study aimed to understand the effects of inspiratory muscle pre-activation (IMPA) on high-intensity running and passive recovery, as applied to active subjects. In an original and innovative investigation of the impacts of IMPA on high-intensity running, we proposed the identification of the interactions among physical characteristics, physiological responses and muscle oxygenation in more and less active muscle to a running exercise using a complex network model. For this, fifteen male subjects were submitted to all-out 30 s tethered running efforts preceded or not preceded by IMPA, composed of 2 × 15 repetitions (1 min interval between them) at 40% of the maximum individual inspiratory pressure using a respiratory exercise device. During running and recovery, we monitored the physiological responses (heart rate, blood lactate, oxygen saturation) and muscle oxygenation (in vastus lateralis and biceps brachii) by wearable near-infrared spectroscopy (NIRS). Thus, we investigated four scenarios: two in the tethered running exercise (with or without IMPA) and two built into the recovery process (after the all-out 30 s), under the same conditions. Undirected weighted graphs were constructed, and four centrality metrics were analyzed (Degree, Betweenness, Eigenvector, and Pagerank). The IMPA (40% of the maximum inspiratory pressure) was effective in increasing the peak and mean relative running power, and the analysis of the complex networks advanced the interpretation of the effects of physiological adjustments related to the IMPA on exercise and recovery. Centrality metrics highlighted the nodes related to muscle oxygenation responses (in more and less active muscles) as significant to all scenarios, and systemic physiological responses mediated this impact, especially after IMPA application. Our results suggest that this respiratory strategy enhances exercise, recovery and the multidimensional approach to understanding the effects of physiological adjustments on these conditions.

13.
Sci Rep ; 11(1): 11148, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045508

RESUMO

This study investigated the effects of inspiratory muscle pre-activation (IMPA) on the interactions among the technical-tactical, physical, physiological, and psychophysiological parameters in a simulated judo match, based on the centrality metrics by complex network model. Ten male athletes performed 4 experimental sessions. Firstly, anthropometric measurements, maximal inspiratory pressure (MIP) and global strenght of the inspiratory muscles were determined. In the following days, all athletes performed four-minute video-recorded judo matches, under three conditions: without IMPA (CON), after IMPA at 15% (IMPA15), and at 40% (IMPA40) of MIP using an exerciser device. Blood lactate, heart rate and rating of perceived exertion were monitored, and the technical-tactical parameters during the match were related to offensive actions and the time-motion. Based on the complex network, graphs were constructed for each scenario (CON, IMPA15, and IMPA40) to investigate the Degree and Pagerank centrality metrics. IMPA40 increased the connectivity of the physical and technical-tactical parameters in complex network and highlighted the combat frequency and average combat time in top-five ranked nodes. IMPA15 also favoured the interactions among the psychophysiological, physical, and physiological parameters. Our results suggest the positive effects of the IMPA, indicating this strategy to prepare the organism (IMPA15) and to improve performance (IMPA40) in judo match.


Assuntos
Desempenho Atlético/fisiologia , Músculos Respiratórios/fisiologia , Atletas , Força da Mão/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Artes Marciais , Modelos Teóricos , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-30130187

RESUMO

Prior art has shown it is possible to estimate, through image processing and computer vision techniques, the types and parameters of transformations that have been applied to the content of individual images to obtain new images. Given a large corpus of images and a query image, an interesting further step is to retrieve the set of original images whose content is present in the query image, as well as the detailed sequences of transformations that yield the query image given the original images. This is a problem that recently has received the name of image provenance analysis. In these times of public media manipulation (e.g., fake news and meme sharing), obtaining the history of image transformations is relevant for fact checking and authorship verification, among many other applications. This article presents an end-to-end processing pipeline for image provenance analysis, which works at real-world scale. It employs a cutting-edge image filtering solution that is custom-tailored for the problem at hand, as well as novel techniques for obtaining the provenance graph that expresses how the images, as nodes, are ancestrally connected. A comprehensive set of experiments for each stage of the pipeline is provided, comparing the proposed solution with state-of-the-art results, employing previously published datasets. In addition, this work introduces a new dataset of real-world provenance cases from the social media site Reddit, along with baseline results.

15.
IEEE Trans Image Process ; 24(12): 4726-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26276988

RESUMO

Despite important recent advances, the vulnerability of biometric systems to spoofing attacks is still an open problem. Spoof attacks occur when impostor users present synthetic biometric samples of a valid user to the biometric system seeking to deceive it. Considering the case of face biometrics, a spoofing attack consists in presenting a fake sample (e.g., photograph, digital video, or even a 3D mask) to the acquisition sensor with the facial information of a valid user. In this paper, we introduce a low cost and software-based method for detecting spoofing attempts in face recognition systems. Our hypothesis is that during acquisition, there will be inevitable artifacts left behind in the recaptured biometric samples allowing us to create a discriminative signature of the video generated by the biometric sensor. To characterize these artifacts, we extract time-spectral feature descriptors from the video, which can be understood as a low-level feature descriptor that gathers temporal and spectral information across the biometric sample and use the visual codebook concept to find mid-level feature descriptors computed from the low-level ones. Such descriptors are more robust for detecting several kinds of attacks than the low-level ones. The experimental results show the effectiveness of the proposed method for detecting different types of attacks in a variety of scenarios and data sets, including photos, videos, and 3D masks.


Assuntos
Identificação Biométrica/métodos , Segurança Computacional , Face/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Gravação em Vídeo/classificação , Bases de Dados Factuais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA