RESUMO
The parasitic protozoa Leishmania (Leishmania) infantum is the etiological agent of human visceral leishmaniasis and canine leishmaniasis in South America, where Brazil is the most affected country. This zoonotic disease is transmitted by the bite of an infected phlebotomine sand fly and dogs constitute the main domestic reservoir of the parasite. In this study, we screened 2348 dogs of the municipality of Embu das Artes, Brazil, for antibodies against the parasite. Prevalence for canine leishmaniasis seropositivity was 2.81%, as assessed using a Dual-Path Platform rapid test for canine leishmaniasis. Twenty-five seropositive dogs were euthanized for parasite isolation and 14 isolates were successful obtained. Nucleotide sequencing of the internal transcribed spacer confirmed the isolates to be L. (L.) infantum, and very low sequence variability was observed among them. The in vitro susceptibility to miltefosine and paromomycin was assessed and moderate variation in paromomycin susceptibility was found among the isolates in the promastigote and intracellular amastigote stages. On the other hand, in vitro susceptibility to miltefosine of these isolates was homogenous, particularly in the amastigote stage (EC50 values from 0.69 to 2.07 µM). In addition, the miltefosine sensitivity locus was deleted in all the isolates, which does not corroborate the hypothesis that the absence of this locus is correlated with a low in vitro susceptibility. Our findings confirm that the municipality of Embu das Artes is endemic for canine leishmaniasis and that isolates from this region are susceptible to paromomycin and miltefosine, indicating the potential of these drugs to be clinically evaluated in the treatment of human visceral leishmaniasis in Brazil.
Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Animais , Brasil/epidemiologia , Doenças do Cão/parasitologia , Cães , Humanos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/veterinária , Paromomicina/uso terapêuticoRESUMO
PURPOSE: The objective of this study was to verify the influence of test environment on the flexural strength of dental porcelains with distinct microstructures. MATERIAL AND METHODS: Disk-shaped specimens from three dental porcelains with distinct leucite content (VM: zero; CE: 12; NS: 22 vol%) were manufactured and tested for biaxial flexural strength in air and immersed in artificial saliva. The results were analyzed by means of two-way ANOVA and Tukey's test (α= 0.05). RESULTS: The flexural strength (MPa) obtained for ambient air and artificial saliva environments, respectively, were: 110.0 ± 16.0 and 81.5 ± 10.8 for VM; 51.9 ± 4.0 and 42.0 ± 4.7 for CE; 72.0 ± 11.5 and 63.6 ± 5.8 for NS. A numerical decrease in the mean flexural strength was observed for all groups when specimens were tested under artificial saliva; however, the difference was only statistically significant for VM. CONCLUSIONS: The results indicate that the effect of water immersion on the flexural strength of dental porcelains varies according to their leucite content, as only the material without leucite in its microstructure (VM) showed significant strength degradation when tested under water.
Assuntos
Porcelana Dentária/química , Análise do Estresse Dentário , Teste de Materiais/métodos , Silicatos de Alumínio , Cristalização , Módulo de Elasticidade , Maleabilidade , Saliva Artificial , Resistência à Tração , Vibração , ÁguaRESUMO
OBJECTIVES: To evaluate the effect of pH of storage medium on slow crack growth (SCG) parameters of dental porcelains. METHODS: Two porcelains were selected: with (UD) and without (VM7) leucite particles, in order to assess if the microstructure would affect the response of the material to the pH variation. Disc specimens were produced following manufacturers' instructions. Specimens were stored in artificial saliva in pHs 3.5, 7.0 or 10.0 for 10 days and after that the fatigue parameters (n: SCG susceptibility coefficient and sigma(0): scaling parameter) were obtained by the dynamic fatigue test using the same pH of storage. Microstructural analysis of the materials was also performed. RESULTS: For VM7, the values of n obtained in the different pHs were similar and varied from 29.9 to 31.2. The sigma(0) value obtained in pH 7.0 for VM7 was higher than that obtained in the other pHs, which were similar. For porcelain UD, n values obtained in pHs 7.0 and 10.0 were similar (40.8 and 39.6, respectively), and higher than that obtained in pH 3.5 (26.5). With respect to sigma(0), the value obtained for porcelain UD in pH 10.0 was lower than those obtained in pHs 3.5 and 7.0, which were similar. SIGNIFICANCE: The effect of pH on the stress corrosion susceptibility (n) depended on the porcelain studied. While the n value of VM7 was not affected by the pH, UD presented lower n value in acid pH. For both porcelains, storage in acid or basic pH resulted in strength degradation.
Assuntos
Porcelana Dentária/química , Óxido de Alumínio/química , Silicatos de Alumínio/química , Análise do Estresse Dentário , Dureza , Humanos , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Teste de Materiais , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Saliva Artificial/química , Hidróxido de Sódio/química , Espectrometria por Raios X , Estresse Mecânico , Propriedades de Superfície , Difração de Raios XRESUMO
Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey's test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.
Assuntos
Argônio/química , Técnica de Fundição Odontológica , Prótese Dentária , Titânio/química , Ligas , Materiais Biocompatíveis/química , Ligas Dentárias/química , Materiais Dentários/química , Gases , Dureza , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Estresse Mecânico , Resistência à TraçãoRESUMO
OBJECTIVES: To determine the effect of ion exchange on slow crack growth (SCG) parameters (n, stress corrosion susceptibility coefficient, and sigma(f0), scaling parameter) and Weibull parameters (m, Weibull modulus, and sigma(0), characteristic strength) of a dental porcelain. METHODS: 160 porcelain discs were fabricated according to manufacturer's instructions, polished through 1 microm and divided into two groups: GC (control) and GI (submitted to an ion exchange procedure using a KNO3 paste at 470 degrees C for 15 min). SCG parameters were determined by biaxial flexural strength test in artificial saliva at 37 degrees C using five constant stress rates (n=10). 20 specimens of each group were tested at 1 MPa/s to determine Weibull parameters. The SPT diagram was constructed using the least-squares fit of the strength data versus probability of failure. RESULTS: Mean values of m and sigma(0) (95% confidence interval), n and sigma(f0) (standard deviation) were, respectively: 13.8 (10.1-18.8) and 60.4 (58.5-62.2), 24.1 (2.5) and 58.1 (0.01) for GC and 7.4 (5.3-10.0) and 136.8 (129.1-144.7), 36.7 (7.3) and 127.9 (0.01) for GI. Fracture stresses (MPa) calculated using the SPT diagram for lifetimes of 1 day, 1 year and 10 years (at a 5% failure probability) were, respectively, 31.8, 24.9 and 22.7 for GC and 71.2, 60.6 and 56.9 for GI. SIGNIFICANCE: For the porcelain tested, the ion exchange process improved strength and resistance to SCG, however, the material's reliability decreased. The predicted fracture stress at 5% failure probability for a lifetime of 10 years was also higher for the ion treated group.