Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 185(6): 995-1007.e18, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303429

RESUMO

Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Epitopos , Glicoproteínas/química , Subunidades Proteicas
2.
Cell ; 177(6): 1566-1582.e17, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31104840

RESUMO

Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity.


Assuntos
Anticorpos Monoclonais/imunologia , Linfócitos B/fisiologia , Doença pelo Vírus Ebola/imunologia , Adulto , Sequência de Aminoácidos/genética , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/metabolismo , Chlorocebus aethiops , Vacinas contra Ebola/imunologia , Ebolavirus/genética , Ebolavirus/metabolismo , Ebolavirus/patogenicidade , Epitopos/sangue , Feminino , Glicoproteínas/genética , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulina G/imunologia , Células Jurkat , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sobreviventes , Células Vero , Proteínas do Envelope Viral/genética
3.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728263

RESUMO

The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates.IMPORTANCE The pathogenesis of Ebola virus disease (EVD) in humans is complex, and the mechanisms contributing to immunity are poorly understood. In particular, it appears that the quality and magnitude of the human B cell response early after recovery from EVD may be reduced compared to most viral infections. Here, we isolated human monoclonal antibodies from B cells of four survivors of EVD at 1 or 3 months after hospital discharge. Ebola-specific memory B cells early in convalescence were low in frequency, and the antibodies they encoded demonstrated poor neutralizing potencies. One neutralizing antibody that protected mice from lethal infection, EBOV237, was identified in the panel of 25 human antibodies isolated. Recognition of the glycan cap epitope recognized by EBOV237 suggests that this antigenic site should be considered in vaccine design and treatment strategies for EVD.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Memória Imunológica , Sobreviventes , Proteínas do Envelope Viral/imunologia , Feminino , Humanos , Masculino , Estados Unidos
4.
Viruses ; 15(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140592

RESUMO

Venezuelan equine encephalitis virus (VEEV) outbreaks occur sporadically. Additionally, VEEV has a history of development as a biothreat agent. Yet, no FDA-approved vaccine or therapeutic exists for VEEV disease. The sporadic outbreaks present a challenge for testing medical countermeasures (MCMs) in humans; therefore, well-defined animal models are needed for FDA Animal Rule licensure. The cynomolgus macaque (CM) model has been studied extensively at high challenge doses of the VEEV Trinidad donkey strain (>1.0 × 108 plaque-forming units [PFU]), doses that are too high to be a representative human dose. Based on viremia of two subtypes of VEEV, IC, and IAB, we found the CM infectious dose fifty (ID50) to be low, 12 PFU, and 6.7 PFU, respectively. Additionally, we characterized the pattern of three clinical parameters (viremia, temperature, and lymphopenia) across a range of doses to identify a challenge dose producing consistent signs of infection. Based on these studies, we propose a shift to using a lower challenge dose of 1.0 × 103 PFU in the aerosol CM model of VEEV disease. At this dose, NHPs had the highest viremia, demonstrated a fever response, and had a measurable reduction in complete lymphocyte counts-biomarkers that can demonstrate MCM efficacy.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Vacinas Virais , Animais , Cavalos , Humanos , Macaca fascicularis , Viremia/tratamento farmacológico , Modelos Animais de Doenças
5.
Appl Biosaf ; 26(1): 23-32, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36033961

RESUMO

Introduction: Failure of an existing effluent decontamination system (EDS) prompted the consideration of commercial off-the-shelf solutions for decontamination of containment laboratory waste. A bleach-based chemical EDS was purchased to serve as an interim solution. Methods: Studies were conducted in the laboratory to validate inactivation of Bacillus spores with bleach in complex matrices containing organic simulants including fetal bovine serum, humic acid, and animal room sanitation effluent. Results: These studies demonstrated effective decontamination of >106 spores at a free chlorine concentration of ≥5700 parts per million with a 2-hour contact time. Translation of these results to biological validation of the bleach-based chemical EDS required some modifications to the system and its operation. Discussion: The chemical EDS was validated for the treatment of biosafety levels 3 and 4 waste effluent using laboratory-prepared spore packets along with commercial biological indicators; however, several issues and lessons learned identified during the process of onboarding are also discussed, including bleach product source, method of validation, dechlorination, and treated waste disposal.

6.
PLoS Negl Trop Dis ; 14(11): e0008831, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33166294

RESUMO

A new coronavirus (SARS-CoV-2) emerged in the winter of 2019 in Wuhan, China, and rapidly spread around the world. The extent and efficiency of SARS-CoV-2 pandemic is far greater than previous coronaviruses that emerged in the 21st Century. Here, we modeled stability of SARS-CoV-2 on skin, paper currency, and clothing to determine if these surfaces may factor in the fomite transmission dynamics of SARS-CoV-2. Skin, currency, and clothing samples were exposed to SARS-CoV-2 under laboratory conditions and incubated at three different temperatures (4°C± 2°C, 22°C± 2°C, and 37°C ± 2°C). We evaluated stability at 0 hours (h), 4 h, 8 h, 24 h, 72 h, 96 h, 7 days, and 14 days post-exposure. SARS-CoV-2 was stable on skin through the duration of the experiment at 4°C (14 days). Virus remained stable on skin for at least 96 h at 22°C and for at least 8h at 37°C. There were minimal differences between the tested currency samples. The virus remained stable on the $1 U.S.A. Bank Note for at least 96 h at 4°C while we did not detect viable virus on the $20 U.S.A. Bank Note samples beyond 72 h. The virus remained stable on both Bank Notes for at least 8 h at 22°C and 4 h at 37°C. Clothing samples were similar in stability to the currency. Viable virus remained for at least 96 h at 4°C and at least 4 h at 22°C. We did not detect viable virus on clothing samples at 37°C after initial exposure. This study confirms the inverse relationship between virus stability and temperature. Furthermore, virus stability on skin demonstrates the need for continued hand hygiene practices to minimize fomite transmission both in the general population as well as in workplaces where close contact is common.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Pele/virologia , COVID-19 , Vestuário , Infecções por Coronavirus/transmissão , Microbiologia Ambiental , Humanos , Pandemias , Pneumonia Viral/transmissão , SARS-CoV-2 , Propriedades de Superfície , Temperatura
7.
Antiviral Res ; 181: 104854, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32621945

RESUMO

Recent studies highlight that infection with Coxsackievirus B3, Venezuelan equine encephalitis virus (VEEV), Marburg virus, or stimulation using poly I:C (dsRNA), upregulates the signaling adaptor protein MyD88 and impairs the host antiviral type I interferon (IFN) responses. In contrast, MyD88 deficiency (MyD88-/-) increases the type I IFN and survivability of mice implying that MyD88 up regulation limits the type I IFN response. Reasoning that MyD88 inhibition in a virus-like manner may increase type I IFN responses, our studies revealed lipopolysaccharide stimulation of U937 cells or poly I:C stimulation of HEK293-TLR3, THP1 or U87 cells in the presence of a previously reported MyD88 inhibitor (compound 4210) augmented IFN-ß and RANTES production. Consistent with these results, overexpression of MyD88 decreased IFN-ß, whereas MyD88 inhibition rescued IFN-ß production concomitant with increased IRF3 phosphorylation, suggesting IRF-mediated downstream signaling to the IFN-ß response. Further, compound 4210 treatment inhibited MyD88 interaction with IRF3/IRF7 indicating that MyD88 restricts type I IFN signaling through sequestration of IRF3/IRF7. In cell based infection assays, compound 4210 treatment suppressed replication of VEEV, Eastern equine encephalitis virus, Ebola virus (EBOV), Rift Valley Fever virus, Lassa virus, and Dengue virus with IC50 values ranging from 11 to 42 µM. Notably, administration of compound 4210 improved survival, weight change, and clinical disease scores in mice following challenge with VEEV TC-83 and EBOV. Collectively, these results provide evidence that viral infections responsive to MyD88 inhibition lead to activation of IRF3/IRF7 and promoted a type I IFN response, thus, raising the prospect of an approach of host-directed antiviral therapy.


Assuntos
Antivirais/farmacologia , Interferon Tipo I/genética , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Vírus/efeitos dos fármacos , Animais , Células HEK293 , Humanos , Concentração Inibidora 50 , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fosforilação , Poli I-C/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Células THP-1 , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Vírus/classificação
8.
Front Microbiol ; 11: 561530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072022

RESUMO

The human immune response to eastern equine encephalitis virus (EEEV) infection is poorly characterized due to the rarity of infection. We examined the humoral and cellular immune response to EEEV acquired from an infected donor via liver transplantation. Both binding and highly neutralizing antibodies to EEEV as well as a robust EEEV-specific IgG memory B cell response were generated. Despite triple-drug immunosuppressive therapy, a virus-specific CD4+ T cell response, predominated by interferon-γ production, was generated. T cell epitopes on the E2 envelope protein were identified by interferon-γ ELISpot. Although these results are from a single person who acquired EEEV by a non-traditional mechanism, to our knowledge this work represents the first analysis of the human cellular immune response to EEEV.

9.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896634

RESUMO

We sequenced the complete coding genome of the western equine encephalitis virus (WEEV) strain Fleming. This strain was originally isolated in 1938 from a human WEEV case.

10.
PLoS Negl Trop Dis ; 12(5): e0006474, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29742102

RESUMO

Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that has caused large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Currently, no licensed vaccine or therapeutics exists to treat this potentially deadly disease. The explosive nature of RVFV outbreaks and the severe consequences of its accidental or intentional introduction into RVFV-free areas provide the impetus for the development of novel vaccine candidates for use in both livestock and humans. Rationally designed vaccine candidates using reverse genetics have been used to develop deletion mutants of two known RVFV virulence factors, the NSs and NSm genes. These recombinant viruses were demonstrated to be protective and immunogenic in rats, mice, and sheep, without producing clinical illness in these animals. Here, we expand upon those findings and evaluate the single deletion mutant (ΔNSs rRVFV) and double deletion mutant (ΔNSs-ΔNSm rRVFV) vaccine candidates in the common marmoset (Callithrix jacchus), a non-human primate (NHP) model resembling severe human RVF disease. We demonstrate that both the ΔNSs and ΔNSs-ΔNSm rRVFV vaccine candidates were found to be safe and immunogenic in the current study. The vaccinated animals received a single dose of vaccine that led to the development of a robust antibody response. No vaccine-induced adverse reactions, signs of clinical illness or infectious virus were detected in the vaccinated marmosets. All vaccinated animals that were subsequently challenged with RVFV were protected against viremia and liver disease. In summary, our results provide the basis for further development of the ΔNSs and ΔNSs-ΔNSm rRVFV as safe and effective human RVFV vaccines for this significant public health threat.


Assuntos
Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Callithrix/imunologia , Callithrix/virologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Deleção de Sequência , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/administração & dosagem , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
11.
J Virol Methods ; 248: 136-144, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28668710

RESUMO

A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter.


Assuntos
Microscopia Eletrônica de Transmissão e Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Carga Viral/métodos , Vírus/isolamento & purificação , Vírus/ultraestrutura , Microscopia Eletrônica de Varredura/instrumentação , Reprodutibilidade dos Testes , Software
12.
Science ; 351(6277): 1078-83, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26912366

RESUMO

Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Formação de Anticorpos , Complexo Antígeno-Anticorpo/química , República Democrática do Congo/epidemiologia , Surtos de Doenças , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/uso terapêutico , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/terapia , Humanos , Imunização Passiva , Camundongos , Sobreviventes , Doadores de Tecidos , Proteínas do Envelope Viral/química , Vírion/imunologia
13.
Sci Transl Med ; 5(199): 199ra113, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966302

RESUMO

Ebola virus (EBOV) remains one of the most lethal transmissible infections and is responsible for high fatality rates and substantial morbidity during sporadic outbreaks. With increasing human incursions into endemic regions and the reported possibility of airborne transmission, EBOV is a high-priority public health threat for which no preventive or therapeutic options are currently available. Recent studies have demonstrated that cocktails of monoclonal antibodies are effective at preventing morbidity and mortality in nonhuman primates (NHPs) when administered as a post-exposure prophylactic within 1 or 2 days of challenge. To test whether one of these cocktails (MB-003) demonstrates efficacy as a therapeutic (after the onset of symptoms), we challenged NHPs with EBOV and initiated treatment upon confirmation of infection according to a diagnostic protocol for U.S. Food and Drug Administration Emergency Use Authorization and observation of a documented fever. Of the treated animals, 43% survived challenge, whereas both the controls and all historical controls with the same challenge stock succumbed to infection. These results represent successful therapy of EBOV infection in NHPs.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Vacinas contra Ebola/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/terapia , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Modelos Animais de Doenças , Vacinas contra Ebola/administração & dosagem , Ebolavirus/genética , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Macaca mulatta , Masculino , Planticorpos/administração & dosagem , Planticorpos/uso terapêutico , Profilaxia Pós-Exposição/métodos , Pesquisa Translacional Biomédica , Viremia/imunologia , Viremia/prevenção & controle , Viremia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA