Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 98(4): 2571-2606, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182799

RESUMO

Classical physiological studies using electrophysiological, biophysical, biochemical, and molecular techniques have created a detailed picture of molecular transport, bioenergetics, contractility and movement, and growth, as well as the regulation of these processes by external stimuli in cells and organisms. Newer systems biology approaches are beginning to provide deeper and broader understanding of these complex biological processes and their dynamic responses to a variety of environmental cues. In the past decade, advances in mass spectrometry-based proteomic technologies have provided invaluable tools to further elucidate these complex cellular processes, thereby confirming, complementing, and advancing common views of physiology. As one notable example, the application of proteomics to study the regulation of kidney function has yielded novel insights into the chemical and physical processes that tightly control body fluids, electrolytes, and metabolites to provide optimal microenvironments for various cellular and organ functions. Here, we systematically review, summarize, and discuss the most significant key findings from functional proteomic studies in renal epithelial physiology. We also identify further improvements in technological and bioinformatics methods that will be essential to advance precision medicine in nephrology.


Assuntos
Túbulos Renais/metabolismo , Túbulos Renais/fisiologia , Animais , Biologia Computacional/métodos , Humanos , Espectrometria de Massas/métodos , Proteômica/métodos
2.
Cell Commun Signal ; 22(1): 137, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374071

RESUMO

BACKGROUND: Protein phosphorylation is one of the most prevalent posttranslational modifications involved in molecular control of cellular processes, and is mediated by over 520 protein kinases in humans and other mammals. Identification of the protein kinases responsible for phosphorylation events is key to understanding signaling pathways. Unbiased phosphoproteomics experiments have generated a wealth of data that can be used to identify protein kinase targets and their preferred substrate sequences. METHODS: This study utilized prior data from mass spectrometry-based studies identifying sites of protein phosphorylation after in vitro incubation of protein mixtures with recombinant protein kinases. PTM-Logo software was used with these data to generate position-dependent Shannon information matrices and sequence motif 'logos'. Webpages were constructed for facile access to logos for each kinase and a new stand-alone application was written in Python that uses the position-dependent Shannon information matrices to identify kinases most likely to phosphorylate a particular phosphorylation site. RESULTS: A database of kinase substrate target preference logos allows browsing, searching, or downloading target motif data for each protein kinase ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/ ). These logos were combined with phylogenetic analysis of protein kinase catalytic sequences to reveal substrate preference patterns specific to particular groups of kinases ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html ). A stand-alone program, KinasePredictor, is provided ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html ). It takes as input, amino-acid sequences surrounding a given phosphorylation site and generates a ranked list of protein kinases most likely to phosphorylate that site. CONCLUSIONS: This study provides three new resources for protein kinase characterization. It provides a tool for prediction of kinase-substrate interactions, which in combination with other types of data (co-localization, etc.), can predict which kinases are likely responsible for a given phosphorylation event in a given tissue. Video Abstract.


Assuntos
Proteínas Quinases , Proteínas , Animais , Humanos , Filogenia , Proteínas Quinases/metabolismo , Fosforilação , Proteínas/metabolismo , Espectrometria de Massas/métodos , Mamíferos/metabolismo
3.
J Physiol ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37114282

RESUMO

Animal models of a variety of acquired nephrogenic diabetes insipidus (NDI) disorders have identified a common feature: all such models are associated with the loss of aquaporin-2 (AQP2) from collecting duct principal cells, explaining the associated polyuria. To discover mechanisms of AQP2 loss, previous investigators have carried out either transcriptomics (lithium-induced NDI, unilateral ureteral obstruction, endotoxin-induced NDI) or proteomics (hypokalaemia-associated NDI, hypercalcaemia-associated NDI, bilateral ureteral obstruction), yielding contrasting views. Here, to address whether there may be common mechanisms underlying loss of AQP2 in acquired NDI disorders, we have used bioinformatic data integration techniques to combine information from all transcriptomic and proteomic data sets. The analysis reveals roles for autophagy/apoptosis, oxidative stress and inflammatory signalling as key elements of the mechanism that results in loss of AQP2. These processes can cause AQP2 loss through the combined effects of repression of Aqp2 gene transcription, generalized translational repression, and increased autophagic degradation of proteins including AQP2. Two possible types of stress-sensor proteins, namely death receptors and stress-sensitive protein kinases of the EIF2AK family, are discussed as potential triggers for signalling processes that result in loss of AQP2. KEY POINTS: Prior studies have shown in a variety of animal models of acquired nephrogenic diabetes insipidus (NDI) that loss of the aquaporin-2 (AQP2) protein is a common feature. Investigations of acquired NDI using transcriptomics (RNA-seq) and proteomics (protein mass spectrometry) have led to differing conclusions regarding mechanisms of AQP2 loss. Bioinformatic integration of transcriptomic and proteomic data from these prior studies now reveals that acquired NDI models map to three core processes: oxidative stress, apoptosis/autophagy and inflammatory signalling. These processes cause loss of AQP2 through translational repression, accelerated degradation of proteins, and transcriptional repression.

4.
Analyst ; 148(12): 2767-2775, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37194362

RESUMO

COVID-19 has caused global health problems, and so rapid diagnosis is crucial to slow spread of the disease. Herein, a novel lab-on-paper screening method for SARS-CoV-2 Omicron BA.2 variant was developed using a gold nanoparticle-based colorimetric biosensor along with sensitive detection of SARS-CoV-2 antigen using laser desorption ionization-mass spectrometry (LDI-MS). As a result of antigen-antibody interaction, in the presence of SARS-CoV-2 antigen the gold nanoparticles undergo aggregation and change color from red to light purple, allowing for rapid determination of SARS-CoV-2 antigen with the naked eye. Furthermore, the lab-on-paper method can be directly applied as a substrate for sensitive quantitation of SARS-CoV-2 antigen in saliva using LDI-MS without the use of a conventional organic matrix and sample preparation. LDI-MS offers early diagnosis with high sensitivity, rapidity without sample preparation and lower cost per test compared with reverse transcriptase-PCR, which is crucial for preventing mortality in patients with underlying conditions. This method showed linearity over 0.01-1 µg mL-1 covering the cut-off value of 0.048 µg mL-1 for COVID-19 detection in human saliva. Moreover, a colorimetric sensor for urea was also fabricated in-parallel, for prediction of COVID-19 severity in patients with chronic kidney disease. The color change upon increasing urea concentration directly reflected kidney damage, which is related to increasing risk of mortality among patients with COVID-19. Hence, this platform might be a potential device for non-invasive diagnosis of SARS-CoV-2 Omicron BA.2 variant, which is the variant of most concern because it is transmitted more rapidly than the original SARS-CoV-2 virus and the Delta variant.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Ouro , Teste para COVID-19
5.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768154

RESUMO

Because of endotoxemia during sepsis (a severe life-threatening infection), lipopolysaccharide (LPS) tolerance (the reduced responses to the repeated LPS stimulation) might be one of the causes of sepsis-induced immune exhaustion (the increased susceptibility to secondary infection and/or viral reactivation). In LPS tolerance macrophage (twice-stimulated LPS, LPS/LPS) compared with a single LPS stimulation (N/LPS), there was (i) reduced energy of the cell in both glycolysis and mitochondrial activities (extracellular flux analysis), (ii) decreased abundance of the following proteins (proteomic analysis): (a) complex I and II of the mitochondrial electron transport chain, (b) most of the glycolysis enzymes, (c) anti-viral responses with Myxovirus resistance protein 1 (Mx1) and Ubiquitin-like protein ISG15 (Isg15), (d) antigen presentation pathways, and (iii) the down-regulated anti-viral genes, such as Mx1 and Isg15 (polymerase chain reaction). To test the correlation between LPS tolerance and viral reactivation, asymptomatic mice with and without murine norovirus (MNV) infection as determined in feces were tested. In MNV-positive mice, MNV abundance in the cecum, but not in feces, of LPS/LPS mice was higher than that in N/LPS and control groups, while MNV abundance of N/LPS and control were similar. Additionally, the down-regulated Mx1 and Isg15 were also demonstrated in the cecum, liver, and spleen in LPS/LPS-activated mice, regardless of MNV infection, while N/LPS more prominently upregulated these genes in the cecum of MNV-positive mice compared with the MNV-negative group. In conclusion, defects in anti-viral responses after LPS tolerance, perhaps through the reduced energy status of macrophages, might partly be responsible for the viral reactivation. More studies on patients are of interest.


Assuntos
Lipopolissacarídeos , Norovirus , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Norovirus/genética , Proteômica , Macrófagos/metabolismo , Fígado
6.
J Proteome Res ; 21(12): 2893-2904, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315652

RESUMO

Glioblastoma (GBM) is a devastating primary brain cancer with a poor prognosis. GBM is associated with an abnormal mechanistic target of rapamycin (mTOR) signaling pathway, consisting of two distinct kinase complexes: mTORC1 and mTORC2. The complexes play critical roles in cell proliferation, survival, migration, metabolism, and DNA damage response. This study investigated the aberrant mTORC2 signaling pathway in GBM cells by performing quantitative phosphoproteomic analysis of U87MG cells under different drug treatment conditions. Interestingly, a functional analysis of phosphoproteome revealed that mTORC2 inhibition might be involved in double-strand break (DSB) repair. We further characterized the relationship between mTORC2 and BRISC and BRCA1-A complex member 1 (BABAM1). We demonstrated that pBABAM1 at Ser29 is regulated by mTORC2 to initiate DNA damage response, contributing to DNA repair and cancer cell survival. Accordingly, the inactivation of mTORC2 significantly ablated pBABAM1 (Ser29), reduced DNA repair activities in the nucleus, and promoted apoptosis of the cancer cells. Furthermore, we also recognized that histone H2AX phosphorylation at Ser139 (γH2AX) could be controlled by mTORC2 to repair the DNA. These results provided a better understanding of the mTORC2 function in oncogenic DNA damage response and might lead to specific mTORC2 treatments for brain cancer patients in the future.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Glioblastoma/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Encefálicas/metabolismo , Dano ao DNA , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
Bioinformatics ; 37(21): 3830-3838, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34196671

RESUMO

MOTIVATION: MHC-peptide binding prediction has been widely used for understanding the immune response of individuals or populations, each carrying different MHC molecules as well as for the development of immunotherapeutics. The results from MHC-peptide binding prediction tools are mostly reported as a predicted binding affinity (IC50) and the percentile rank score, and global thresholds e.g. IC50 value < 500 nM or percentile rank < 2% are generally recommended for distinguishing binding peptides from non-binding peptides. However, it is difficult to evaluate statistically the probability of an individual peptide binding prediction to be true or false solely considering predicted scores. Therefore, statistics describing the overall global false discovery rate (FDR) and local FDR, also called posterior error probability (PEP) are required to give statistical context to the natively produced scores. RESULT: We have developed an algorithm and code implementation, called MHCVision, for estimation of FDR and PEP values for the predicted results of MHC-peptide binding prediction from the NetMHCpan tool. MHCVision performs parameter estimation using a modified expectation maximization framework for a two-component beta mixture model, representing the distribution of true and false scores of the predicted dataset. We can then estimate the PEP of an individual peptide's predicted score, and conversely the probability that it is true. We demonstrate that the use of global FDR and PEP estimation can provide a better trade-off between sensitivity and precision over using currently recommended thresholds from tools. AVAILABILITY AND IMPLEMENTATION: https://github.com/PGB-LIV/MHCVision. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Peptídeos , Humanos , Ligação Proteica , Peptídeos/química , Probabilidade
8.
Bioessays ; 41(8): e1900003, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31210384

RESUMO

For many viruses, RNA is the holder of genetic information and serves as the template for both replication and translation. While host and viral proteins play important roles in viral decision-making, the extent to which viral RNA (vRNA) actively participates in translation and replication might be surprising. Here, the focus is on flaviviruses, which include common human scourges such as dengue, West Nile, and Zika viruses, from an RNA-centric viewpoint. In reviewing more recent findings, an attempt is made to fill knowledge gaps and revisit some canonical views of vRNA structures involved in replication. In particular, alternative views are offered on the nature of the flaviviral promoter and genome cyclization, and the feasibility of refining in vitro-derived models with modern RNA probing and sequencing methods is pointed out. By tracing vRNA structures from translation through encapsidation, a dynamic molecule closely involved in the self-regulation of viral replication is revealed.


Assuntos
Flavivirus/fisiologia , Biossíntese de Proteínas , RNA Viral/genética , Montagem de Vírus/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Sequência de Bases , Genoma Viral , Humanos , Regiões Promotoras Genéticas , RNA não Traduzido , Proteínas não Estruturais Virais/metabolismo
9.
J Clin Lab Anal ; 35(4): e23729, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33590941

RESUMO

INTRODUCTION: Chronic kidney disease (CKD) is a significant global health issue. As the prevalence of renal replacement therapy (RRT) in Thailand is increasing, early detection and management of CKD is the most important step to prevent CKD progression and the need for RRT. Current diagnostic tests for CKD are non-specific and expensive. We aimed to develop and validate antibody-based-albumin point-of-care testing (POCT) to detect patients with impaired kidney function at early stage. METHODS: The prototype strip test was developed under the concept of competitive lateral flow immunochromatography assay, or strip test. Monoclonal antibodies (MAbs) to human serum albumin (HSA) were harvested from the hybridomas of spleen cells from immunized mice and mouse myeloma cells. Presence of MAbs was detected by enzyme-linked immunosorbent assay (ELISA). Spot urine was obtained from patients with kidney disease, type I, or type II Diabetes Mellitus upon their visit at King Chulalongkorn Memorial Hospital during 2018-2019. All samples were analyzed for urine albumin with our POCT (CU microalbumin) and the other two commercial POCTs (Microalbu PHAN and MICRAL). The results were validated against standard method for urine microalbumin measurement. A urine microalbumin concentration of less than 20 ug/ml was defined as normal. The sensitivity, specificity, and predictive values were calculated in comparison with the standard laboratory method. RESULT: A total of 100 adult patients were included. CU microalbumin had a sensitivity of 86%, a specificity of 94%, and a positive predictive value of 96%. Our POCT showed good correlation with the laboratory results. CONCLUSION: CU microalbumin correlated well with the standard method for quantitative measurement of urine albumin. Therefore, it has the potential for early screening of CKD, especially in primary health care facilities in resource limited settings.


Assuntos
Albuminúria/diagnóstico , Diagnóstico Precoce , Testes Imediatos , Insuficiência Renal Crônica/diagnóstico , Animais , Feminino , Humanos , Cinética , Camundongos Endogâmicos BALB C , Insuficiência Renal Crônica/urina , Albumina Sérica Humana/urina
10.
Am J Physiol Renal Physiol ; 318(1): F135-F147, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31736351

RESUMO

After the release of bilateral ureteral obstruction (BUO), postobstructive diuresis from an impaired urine concentration mechanism is associated with reduced aquaporin 2 (AQP2) abundance in the inner medullary collecting duct (IMCD). However, the underlying molecular mechanism of this AQP2 reduction is incompletely understood. To elucidate the mechanisms responsible for this phenomenon, we studied molecular changes in IMCDs isolated from rats with 4-h BUO or sham operation at the early onset of AQP2 downregulation using mass spectrometry-based proteomic analysis. Two-hundred fifteen proteins had significant changes in abundances, with 65% of them downregulated in the IMCD of 4-h BUO rats compared with sham rats. Bioinformatic analysis revealed that significantly changed proteins were associated with functional Gene Ontology terms, including "cell-cell adhesion," "cell-cell adherens junction," "mitochondrial inner membrane," "endoplasmic reticulum chaperone complex," and the KEGG pathway of glycolysis/gluconeogenesis. Targeted liquid chromatography-tandem mass spectrometry or immunoblot analysis confirmed the changes in 19 proteins representative of each predominant cluster, including AQP2. Electron microscopy demonstrated disrupted tight junctions, disorganized adherens junctions, swollen mitochondria, enlargement of the endoplasmic reticulum lumen, and numerous autophagosomes/lysosomes in the IMCD of rats with 4-h BUO. AQP2 and seven proteins chosen as representative of the significantly altered clusters had a significant increase in immunofluorescence-based colocalization with autophagosomes/lysosomes. Immunogold electron microscopy confirmed colocalization of AQP2 with the autophagosome marker microtubule-associated protein 1A/1B-light chain 3 and the lysosomal marker cathepsin D in IMCD cells of rats with 4-h BUO. We conclude that enhanced autophagic degradation of AQP2 and other critical proteins, as well as endoplasmic reticulum stress in the IMCD, are initiated shortly after BUO.


Assuntos
Aquaporina 2/metabolismo , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Rim/metabolismo , Obstrução Ureteral/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Túbulos Renais Coletores/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
11.
Bioinformatics ; 35(24): 5313-5314, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31318409

RESUMO

SUMMARY: Identification of the amino-acid motifs in proteins that are targeted for post-translational modifications (PTMs) is of great importance in understanding regulatory networks. Information about targeted motifs can be derived from mass spectrometry data that identify peptides containing specific PTMs such as phosphorylation, ubiquitylation and acetylation. Comparison of input data against a standardized 'background' set allows identification of over- and under-represented amino acids surrounding the modified site. Conventionally, calculation of targeted motifs assumes a random background distribution of amino acids surrounding the modified position. However, we show that probabilities of amino acids depend on (i) the type of the modification and (ii) their positions relative to the modified site. Thus, software that identifies such over- and under-represented amino acids should make appropriate adjustments for these effects. Here we present a new program, PTM-Logo, that generates representations of these amino acid preferences ('logos') based on position-specific amino-acid probability backgrounds calculated either from user-input data or curated databases. AVAILABILITY AND IMPLEMENTATION: PTM-Logo is freely available online at http://sysbio.chula.ac.th/PTMLogo/ or https://hpcwebapps.cit.nih.gov/PTMLogo/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Proteína Pós-Traducional , Software , Aminoácidos , Matrizes de Pontuação de Posição Específica , Proteínas
12.
BMC Neurol ; 20(1): 372, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33038923

RESUMO

BACKGROUND: Acute vertigo is a common presentation of inner ear disease. However, it can also be caused by more serious conditions, especially posterior circulation stroke. Differentiating between these two conditions by clinical presentations and imaging studies during the acute phase can be challenging. This study aimed to identify serum microRNA (miRNA) candidates that could differentiate between posterior circulation stroke and peripheral vertigo, among patients presenting with acute vertigo. METHODS: Serum levels of six miRNAs including miR-125a-5p, miR-125b-5p, miR-143-3p, miR-342-3p, miR-376a-3p, and miR-433-5p were evaluated. Using quantitative reverse-transcription polymerase chain reaction (RT-qPCR), the serum miRNAs were assessed in the acute phase and at a 90 day follow-up visit. RESULTS: A total of 58 patients with posterior circulation stroke (n = 23) and peripheral vertigo (n = 35) were included in the study. Serum miR-125a-5p (P = 0.001), miR-125b-5p (P <  0.001), miR-143-3p (P = 0.014) and miR-433-5p (P = 0.0056) were present at significantly higher levels in the acute phase, in the patients with posterior circulation infarction. Based on the area under the receiver operating characteristic curve (AUROC) only miR-125a-5p (0.75), miR-125b-5p(0.77), and miR-433-5p (0.71) had an acceptable discriminative ability to differentiate between the central and peripheral vertigo. A combination of miRNAs revealed no significant improvement of AUROC when compared to single miRNAs. CONCLUSION: This study demonstrated the potential of serum miR-125a-5p, miR-125b-5p, and miR-433-5p as biomarkers to assist in the diagnosis of posterior circulation infarction among patients presenting with acute vertigo.


Assuntos
Biomarcadores/sangue , MicroRNAs/sangue , Acidente Vascular Cerebral/diagnóstico , Vertigem/diagnóstico , Adulto , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Acidente Vascular Cerebral/sangue , Vertigem/sangue
13.
Mol Cell Proteomics ; 17(11): 2197-2215, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30097535

RESUMO

Interferon lambda (IFN-λ) is a relatively unexplored, yet promising antiviral agent. IFN-λ has recently been tested in clinical trials of chronic hepatitis B virus infection (CHB), with the advantage that side effects may be limited compared with IFN-α, as IFN-λ receptors are found only in epithelial cells. To date, IFN-λ's downstream signaling pathway remains largely unelucidated, particularly via proteomics methods. Here, we report that IFN-λ3 inhibits HBV replication in HepG2.2.15 cells, reducing levels of both HBV transcripts and intracellular HBV DNA. Quantitative proteomic analysis of HBV-transfected cells was performed following 24-hour IFN-λ3 treatment, with parallel IFN-α2a and PBS treatments for comparison using a dimethyl labeling method. The depth of the study allowed us to map the induction of antiviral proteins to multiple points of the viral life cycle, as well as facilitating the identification of antiviral proteins not previously known to be elicited upon HBV infection (e.g. IFITM3, XRN2, and NT5C3A). This study also shows up-regulation of many effectors involved in antigen processing/presentation indicating that this cytokine exerted immunomodulatory effects through several essential molecules for these processes. Interestingly, the 2 subunits of the immunoproteasome cap (PSME1 and PSME2) were up-regulated whereas cap components of the constitutive proteasome were down-regulated upon both IFN treatments, suggesting coordinated modulation toward the antigen processing/presentation mode. Furthermore, in addition to confirming canonical activation of interferon-stimulated gene (ISG) transcription through the JAK-STAT pathway, we reveal that IFN-λ3 restored levels of RIG-I and RIG-G, proteins known to be suppressed by HBV. Enrichment analysis demonstrated that several biological processes including RNA metabolism, translation, and ER-targeting were differentially regulated upon treatment with IFN-λ3 versus IFN-α2a. Our proteomic data suggests that IFN-λ3 regulates an array of cellular processes to control HBV replication.


Assuntos
Antivirais/metabolismo , Vírus da Hepatite B/fisiologia , Interferons/metabolismo , Proteômica/métodos , Transfecção , Apresentação de Antígeno , Morte Celular , Biologia Computacional , Regulação para Baixo , Células Hep G2 , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , Humanos , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Regulação para Cima , Replicação Viral
14.
J Am Soc Nephrol ; 30(8): 1454-1470, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253651

RESUMO

BACKGROUND: The NaCl cotransporter NCC in the kidney distal convoluted tubule (DCT) regulates urinary NaCl excretion and BP. Aldosterone increases NaCl reabsorption via NCC over the long-term by altering gene expression. But the acute effects of aldosterone in the DCT are less well understood. METHODS: Proteomics, bioinformatics, and cell biology approaches were combined with animal models and gene-targeted mice. RESULTS: Aldosterone significantly increases NCC activity within minutes in vivo or ex vivo. These effects were independent of transcription and translation, but were absent in the presence of high potassium. In vitro, aldosterone rapidly increased intracellular cAMP and inositol phosphate accumulation, and altered phosphorylation of various kinases/kinase substrates within the MAPK/ERK, PI3K/AKT, and cAMP/PKA pathways. Inhibiting GPR30, a membrane-associated receptor, limited aldosterone's effects on NCC activity ex vivo, and NCC phosphorylation was reduced in GPR30 knockout mice. Phosphoproteomics, network analysis, and in vitro studies determined that aldosterone activates EGFR-dependent signaling. The EGFR immunolocalized to the DCT and EGFR tyrosine kinase inhibition decreased NCC activity ex vivo and in vivo. CONCLUSIONS: Aldosterone acutely activates NCC to modulate renal NaCl excretion.


Assuntos
Aldosterona/farmacologia , Túbulos Renais Distais/metabolismo , Transdução de Sinais , Tiazidas/farmacologia , Aldosterona/metabolismo , Animais , Pressão Sanguínea , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Biologia Computacional , AMP Cíclico/metabolismo , Receptores ErbB/metabolismo , Síndrome de Gitelman/metabolismo , Rim/metabolismo , Masculino , Camundongos , Mineralocorticoides/metabolismo , Fosforilação , Proteômica , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
15.
Asian Pac J Allergy Immunol ; 38(2): 91-101, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32563235

RESUMO

Cynics point out that a cure for cancer has been "around the corner" for the last 50 years. Nevertheless, the recent convergence of deep DNA, RNA, and proteomic technologies with enhanced understanding of the nuances of the adaptive immune system has generated great optimism amongst researchers. The extraordinary heterogeneity of various cancers, once thought to be a major therapeutic hurdle, may now be bypassed via "personalized" vaccine treatments. Specifically, these treatments involve the identification of MHC-bound peptides that are unique to a patient's cancer (neoantigens), followed by immunization with peptides, RNA, or DNA that encodes these neoantigens via various delivery systems, thus amplifying the immune system's response to the particular cancer. Such approaches have shown dramatic results in animal studies. Not surprisingly, then, the field of neoantigen-based immunotherapy has advanced at a spectacular rate, necessitating that interested individuals stay apprised of recent developments. Following an introduction to the subject, we thus focus on aspects that are particularly fast-moving; the cellular sources of neoantigens, which are surprisingly diverse, the tools that are used for their identification, and the status of the numerous clinical trials that are now being conducted.


Assuntos
Antígenos de Neoplasias/imunologia , Autoantígenos/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Animais , Ensaios Clínicos como Assunto , Biologia Computacional , Humanos , Neoplasias/imunologia , Medicina de Precisão
16.
J Proteome Res ; 18(8): 3203-3218, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31199156

RESUMO

Mosquito-borne flaviviruses, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), are major human pathogens. Among the flaviviral proteins, the nonstructural protein 5 (NS5) is the largest, most conserved, and major enzymatic component of the viral replication complex. Disruption of the common key NS5-host protein-protein interactions critical for viral replication could aid in the development of broad-spectrum antiflaviviral therapeutics. Hundreds of NS5 interactors have been identified, but these are mostly DENV-NS5 interactors. To this end, we sought to investigate the JEV- and ZIKV-NS5 interactomes using EGFP immunoprecipitation with label-free quantitative mass spectrometry analysis. We report here a total of 137 NS5 interactors with a significant enrichment of spliceosomal and spliceosomal-associated proteins. The transcription complex Paf1C and phosphatase 6 were identified as common NS5-associated complexes. PAF1 was shown to play opposite roles in JEV and ZIKV infections. Additionally, we validated several NS5 targets and proposed their possible roles in infection. These include lipid-shuttling proteins OSBPL9 and OSBPL11, component of RNAP3 transcription factor TFIIIC, minichromosome maintenance, and cochaperone PAQosome. Mining this data set, our study expands the current interaction landscape of NS5 and uncovers several NS5 targets that are new to flavivirus biology.


Assuntos
Vírus da Dengue/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Proteínas não Estruturais Virais/genética , Zika virus/genética , Animais , Dengue/genética , Dengue/virologia , Vírus da Dengue/patogenicidade , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite por Arbovirus/genética , Encefalite por Arbovirus/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/genética , Receptores de Esteroides/genética , Replicação Viral/genética , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
17.
Mod Pathol ; 32(7): 943-956, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30737471

RESUMO

Patients with head and neck squamous cell carcinoma are at increased risk of developing a second primary malignancy, which is associated with poor prognosis and early death. To help improve clinical outcome, we aimed to identify biomarkers for second primary malignancy risk prediction using the routinely obtained formalin-fixed paraffin-embedded tissues of the index head and neck cancer. Liquid chromatography-tandem mass spectrometry was initially performed for candidate biomarker discovery in 16 pairs of primary cancer tissues and their matched normal mucosal epithelia from head and neck squamous cell carcinoma patients with or without second primary malignancy. The 32 candidate proteins differentially expressed between head and neck cancers with and without second primary malignancy were identified. Among these, 30 selected candidates and seven more from literature review were further studied using NanoString nCounter gene expression assay in an independent cohort of 49 head and neck cancer patients. Focusing on the p16-negative cases, we showed that a multivariate logistic regression model comprising the expression levels of ITPR3, KMT2D, EMILIN1, and the patient's age can accurately predict second primary malignancy occurrence with 88% sensitivity and 75% specificity. Furthermore, using Cox proportional hazards regression analysis and survival analysis, high expression levels of ITPR3 and DSG3 were found to be significantly associated with shorter time to second primary malignancy development (log-rank test P = 0.017). In summary, we identified a set of genes whose expressions may serve as the prognostic biomarkers for second primary malignancy occurrence in head and neck squamous cell carcinomas. In combination with the histopathologic examination of index tumor, these biomarkers can be used to guide the optimum frequency of second primary malignancy surveillance, which may lead to early diagnosis and better survival outcome.


Assuntos
Neoplasias Esofágicas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Segunda Neoplasia Primária/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Idoso , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Feminino , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/mortalidade , Prognóstico , Proteômica , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Análise de Sobrevida
18.
Bioinformatics ; 34(12): 2158-2160, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408997

RESUMO

Summary: We present AbDesigner3D, a new tool for identification of optimal immunizing peptides for antibody production using a peptide-based strategy. AbDesigner3D integrates 3D structural data from the Protein Data Bank (PDB) with UniProt data, which includes basic sequence data, post-translational modification sites, SNP occurrences and more. Other features, such as uniqueness and conservation scores, are calculated based on sequences from UniProt. The 3D visualization capabilities allow an intuitive interface, while an abundance of quantitative output simplifies the process of comparing immunogen peptides. Important quantitative features added in this tool include calculation and display of accessible surface area (ASA) and protein-protein interacting residues (PPIR). The specialized data visualization features of AbDesigner3D will greatly assist users to optimize their choice of immunizing peptides. Availability and implementation: AbDesigner3D is freely available at http://sysbio.chula.ac.th/AbDesigner3D or https://hpcwebapps.cit.nih.gov/AbDesigner3D/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Anticorpos/metabolismo , Peptídeos/imunologia , Software , Biologia Sintética/métodos , Anticorpos/química , Biologia Computacional/métodos , Bases de Dados de Proteínas , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica
19.
Proteome Sci ; 17: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30962768

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is caused by excessive accumulation of fat within the liver, leading to further severe conditions such as non-alcoholic steatohepatitis (NASH). Progression of healthy liver to steatosis and NASH is not yet fully understood in terms of process and response. Hepatic oxidative stress is believed to be one of the factors driving steatosis to NASH. Oxidative protein modification is the major cause of protein functional impairment in which alteration of key hepatic enzymes is likely to be a crucial factor for NAFLD biology. In the present study, we aimed to discover carbonylated protein profiles involving in NAFLD biology in vitro. METHODS: Hepatocyte cell line was used to induce steatosis with fatty acids (FA) in the presence and absence of menadione (oxidative stress inducer). Two-dimensional gel electrophoresis-based proteomics and dinitrophenyl hydrazine derivatization technique were used to identify carbonylated proteins. Sequentially, in order to view changes in protein carbonylation pathway, enrichment using Funrich algorithm was performed. The selected carbonylated proteins were validated with western blot and carbonylated sites were further identified by high-resolution LC-MS/MS. RESULTS: Proteomic results and pathway analysis revealed that carbonylated proteins are involved in NASH pathogenesis pathways in which most of them play important roles in energy metabolisms. Particularly, carbonylation level of ATP synthase subunit α (ATP5A), a key protein in cellular respiration, was reduced after FA and FA with oxidative stress treatment, whereas its expression was not altered. Carbonylated sites on this protein were identified and it was revealed that these sites are located in nucleotide binding region. Modification of these sites may, therefore, disturb ATP5A activity. As a consequence, the lower carbonylation level on ATP5A after FA treatment solely or with oxidative stress can increase ATP production. CONCLUSIONS: The reduction in carbonylated level of ATP5A might occur to generate more energy in response to pathological conditions, in our case, fat accumulation and oxidative stress in hepatocytes. This would imply the association between protein carbonylation and molecular response to development of steatosis and NASH.

20.
Lasers Surg Med ; 51(7): 600-608, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30843235

RESUMO

BACKGROUND: Currently, low-level laser therapy (LLLT) has been approved as a new treatment for androgenetic alopecia (AGA). However, it has not been elucidated how LLLT promotes hair growth in vivo. OBJECTIVES: To investigate the change in protein expression from dermal papilla (DP) tissues in male AGA patients after LLLT treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. METHODS: This is an open-label, prospective, single-arm study obtained punch scalp biopsy specimens from patients with AGA before and after LLLT treatment. Each subject was self-treated with helmet type of LLLT (655 nm, 5 mW) device at home for 25 minutes per treatment every other day for 24 weeks. LC-MS/MS analysis based on the dimethyl labeling strategy for protein quantification was used to identify proteins expressed in DP tissues from AGA patients. RESULTS: Proteomic analysis revealed 11 statistically significant up-regulated and 2 down-regulated proteins in LLLT treated DP compared with baseline (P < 0.05). A bioinformatic analysis signifies that these proteins are involved in several biological processes such as regulation of cellular transcription, protein biosynthesis, cell energy, lipid homeostasis, extracellular matrix (ECM), ECM structural constituent, cell-cell/cell-matrix adhesion as well as angiogenesis. ATP-binding cassette sub-family G member, a transporter involved in cellular lipid homeostasis, was the most up-regulated protein. Additionally, LLLT increased the main ECM proteins in DP which results in a bigger volume of DP and a clinical improvement of hair diameter in AGA patients. CONCLUSION: We identified the proteome set of DP proteins of male patients with AGA treated with LLLT which implicates the role of LLLT in promoting hair growth and reversing of miniaturization process of AGA by enhancing DP cell function. Our results strongly support the benefit of LLLT in the treatment of AGA. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Alopecia/metabolismo , Alopecia/terapia , Terapia com Luz de Baixa Intensidade , Proteômica , Biomarcadores/metabolismo , Cromatografia Líquida , Humanos , Terapia com Luz de Baixa Intensidade/instrumentação , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Espectrometria de Massas em Tandem , Resultado do Tratamento , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA