Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Microbiol ; 25(12): 2897-2912, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36975075

RESUMO

The herbicide glyphosate has several potential entry points into composting sites and its impact on composting processes has not yet been evaluated. To assess its impact on bacterial diversity and abundance as well as on community composition and dynamics, we conducted a mesocosm experiment at the Montreal Botanical Garden. Glyphosate had no effect on physicochemical property evolution during composting, while it was completely dissipated by the end of the experiment. Sampling at Days 0, 2, 28 and 112 of the process followed by 16S rRNA amplicon sequencing also found no effect of glyphosate on species richness and community composition. Differential abundance analyses revealed an increase of a few taxa in the presence of glyphosate, namely TRA3-20 (order Polyangiales), Pedosphaeraceae and BIrii41 (order Burkholderiales) after 28 days. In addition, five amplicon sequence variants (ASVs) had lower relative abundance in the glyphosate treatment compared to the control on Day 2, namely Comamonadaceae, Pseudomonas sp., Streptomyces sp., Thermoclostridium sp. and Actinomadura keratinilytica, while two ASVs were less abundant on Day 112, namely Pedomicrobium sp. and Pseudorhodoplanes sp. Most differences in abundance were measured between the different sampling points within each treatment. These results present glyphosate as a poor determinant of species recruitment during composting.


Assuntos
Compostagem , Herbicidas , Streptomyces , Glifosato , RNA Ribossômico 16S/genética , Herbicidas/farmacologia , Streptomyces/genética
2.
Environ Microbiol ; 24(5): 2516-2542, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35466495

RESUMO

Conventional wastewater treatment relies on a complex microbiota; however, much of this community is still to be characterized. To better understand the origin, dynamics and fate of bacteria within a wastewater treatment plant: untreated primary wastewater, activated sludge and post-treatment effluent were characterized. From 3163 exact sequence variants (ESVs), 860 were annotated to species-level. In primary wastewater, 28% of ESVs were putative bacterial species previously associated with humans, 14% with animals and 5% as common to the environment. Differential abundance analysis revealed significant relative reductions in ESVs from potentially human-associated species from primary wastewater to activated sludge, and significant increases in ESVs from species associated with nutrient cycling. Between primary wastewater and effluent, 51% of ESVs from human-associated species did not significantly differ, and species such as Bacteroides massiliensis and Bacteroides dorei increased. These findings illustrate that activated sludge increased extracellular protease and urease-producing species, ammonia and nitrite oxidizers, denitrifiers and specific phosphorus accumulators. Although many human-associated species declined, some persisted in effluent, including strains of potential health or environmental concern. Species-level microbial assessment may be useful for understanding variation in wastewater treatment efficiency as well as for monitoring the release of microbes into surface water and the wider ecosystem.


Assuntos
Microbiota , Purificação da Água , Bactérias/genética , Esgotos/microbiologia , Águas Residuárias/microbiologia
3.
Int J Phytoremediation ; 24(14): 1533-1542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35234104

RESUMO

Phytoextraction of trace elements (TE) using woody species is an economically challenging soil remediation approach because of the long time needed. Yet, some trees contain alkaloids that can be exploited along structural components to enhance biomass value. As alkaloids are thought to be involved in plant defence mechanisms, we hypothesized that potentially hostile phytoremediation conditions could increase their level. Camptothecin in Camptotheca acuminata and 1-deoxynojirimycin in Morus alba were measured from trees grown in a field in presence of Cu, Pb and Zn all together, and from M. alba grown in a greenhouse in presence of Cd or other abiotic stressors (NaCl and bending). The trees did not extract TE in the field, but M. alba stems accumulated Cd in the greenhouse experiment, with no consequence on stomatal conductance and leaves pigments concentration. Camptothecin and 1-deoxynojirimycin concentrations were preserved under all experimental conditions, as was biomass yield, and phenolics were slightly increased in M. alba exposed to TE. This study provides evidence that valuable and persistent alkaloids and phenolics can be extracted from trees facing phytoremediation-associated stresses, without a negative impact on their quantity and on biomass yield. Such products could generate a sustainable stream of revenues during phytoremediation.


There is scarce data on tree alkaloid content and scarcer data on how it is affected by exposure to trace elements in a phytoremediation context. We provide evidence that the content of two specific alkaloids is not altered in Morus alba and Camptotheca acuminata exposed to moderate to elevated levels of contaminating trace elements. The manuscript introduces the use of M. alba for phytoremediation in the Americas and is the first to propose the use of C. acuminata on trace element contaminated sites to produce camptothecin, a valuable anticancer alkaloid.


Assuntos
Camptotheca , Metais Pesados , Morus , Poluentes do Solo , Oligoelementos , Solo/química , Oligoelementos/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Cádmio , 1-Desoxinojirimicina , Árvores , Camptotecina
4.
Int J Phytoremediation ; 23(6): 632-640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33222513

RESUMO

Phytoextraction potential of a co-planting system was evaluated using a shrub and an herbaceous species and compared with monocultures. A greenhouse experiment with Salix interior and Trifolium pratense grown in combination or alone was conducted for 120 days in soil either uncontaminated or contaminated with wood preservatives containing mixed chromated copper arsenate and pentachlorophenol (PCP). The results showed that the plant species produced similar amounts of dry biomass per pot in monoculture and co-planting, whether growing in contaminated or uncontaminated soil. Arsenic (As), chromium (Cr) and copper (Cu) concentrations in root tissue of S. interior increased 8.6%, 65.9% and 4.5%, respectively, in co-planting compared to its monoculture. T. pratense had superior concentration of As (14% higher) in root tissue when co-planted. However, the higher trace elements concentrations in the plant tissues did not translate into measurable differences in total trace element removal per pot, except for As. The bioconcentration factor for Cu and As was high in the belowground portions of the plants in co-planting. PCP levels in the soil decreased to values near the limit of detection in all treatments. These results suggest that co-planting S. interior with T. pratense could lead to higher phytoextraction potential than monoculture.


Assuntos
Metais Pesados , Salix , Poluentes do Solo , Oligoelementos , Trifolium , Biodegradação Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Madeira
5.
Int J Phytoremediation ; 22(14): 1505-1514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32643383

RESUMO

Widely used as wood preservatives for the last century, Pentachlorophenol (PCP) and chromated copper arsenate (CCA) have been shown to leach from treated surfaces and contaminate soil of wood storage sites. We performed a four-year field phytoremediation trial in southern Quebec (Canada) on a site contaminated with PCP and CCA with the following objectives: (1) assess the potential of willow, fescue, alfalfa and Indian mustard to tolerate and translocate CCA and PCP residues in their aerial tissues, (2) investigate the possibility of phytoextraction of dioxins and furans, and (3) test the effect of nitrogen fertilizer on phytoremediation performance. We showed that while nitrogen fertilization increased the chlorophyll content of plants, it did not result in a significantly greater plant biomass. We also showed that plants grown in the presence of PCP/CCA residues were able to translocate and concentrate trace elements in their aerial tissues, but also dioxins and furans (PCDD/F). This suggests that plants grown on sites polluted by PCP might contain dioxins and furans and should be treated as contaminated by these toxic chemicals. Finally, the reduction of soil contaminants at the end of the trial suggests that phytoremediation is a promising approach for decontaminating such sites.


Assuntos
Arsênio , Dioxinas , Furanos , Poluentes do Solo , Arseniatos , Arsênio/análise , Biodegradação Ambiental , Canadá , Cromo/análise , Cobre/análise , Dioxinas/análise , Quebeque , Solo , Poluentes do Solo/análise , Madeira
6.
Environ Microbiol ; 21(7): 2440-2468, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990927

RESUMO

Analysis of 16S ribosomal RNA (rRNA) gene amplification data for microbial barcoding can be inaccurate across complex environmental samples. A method, ANCHOR, is presented and designed for improved species-level microbial identification using paired-end sequences directly, multiple high-complexity samples and multiple reference databases. A standard operating procedure (SOP) is reported alongside benchmarking against artificial, single sample and replicated mock data sets. The method is then directly tested using a real-world data set from surface swabs of the International Space Station (ISS). Simple mock community analysis identified 100% of the expected species and 99% of expected gene copy variants (100% identical). A replicated mock community revealed similar or better numbers of expected species than MetaAmp, DADA2, Mothur and QIIME1. Analysis of the ISS microbiome identified 714 putative unique species/strains and differential abundance analysis distinguished significant differences between the Destiny module (U.S. laboratory) and Harmony module (sleeping quarters). Harmony was remarkably dominated by human gastrointestinal tract bacteria, similar to enclosed environments on earth; however, Destiny module bacteria also derived from nonhuman microbiome carriers present on the ISS, the laboratory's research animals. ANCHOR can help substantially improve sequence resolution of 16S rRNA gene amplification data within biologically replicated environmental experiments and integrated multidatabase annotation enhances interpretation of complex, nonreference microbiomes.


Assuntos
DNA Bacteriano/genética , Exobiologia/métodos , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbiologia Ambiental , Microbioma Gastrointestinal , Humanos , Microbiota , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Astronave , Especificidade da Espécie
7.
Plant Physiol ; 171(1): 3-24, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27002060

RESUMO

Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/ß-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system.


Assuntos
Regulação da Expressão Gênica de Plantas , Salix/genética , Poluentes do Solo , Estresse Fisiológico/genética , Transcriptoma , Animais , Bactérias/genética , Regulação para Baixo , Poluição Ambiental , Recuperação e Remediação Ambiental , Flores/genética , Fungos/genética , Perfilação da Expressão Gênica , Genes Essenciais , Genes de Plantas , Genoma de Planta , Anotação de Sequência Molecular , Mapeamento de Nucleotídeos , Fator 1 de Elongação de Peptídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Salix/enzimologia , Salix/crescimento & desenvolvimento , Salix/metabolismo , Árvores/genética , Árvores/crescimento & desenvolvimento , Tubulina (Proteína)
8.
BMC Plant Biol ; 15: 246, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26459343

RESUMO

BACKGROUND: High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. METHODS: Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. RESULTS: Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. CONCLUSIONS: The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.


Assuntos
Adaptação Fisiológica/genética , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Salix/genética , Poluentes do Solo/toxicidade , Transcriptoma/genética , Adaptação Fisiológica/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Herbivoria/genética , Anotação de Sequência Molecular , Propanóis/metabolismo , Salix/efeitos dos fármacos , Salix/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Árvores/efeitos dos fármacos , Árvores/genética , Árvores/crescimento & desenvolvimento
9.
Int J Phytoremediation ; 17(8): 745-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030362

RESUMO

In this preliminary screening study, we tested the phytoextraction potential of nine Canadian native/well-adapted plant species on a soil highly polluted by trace elements (TE) from a copper refinery. Plant physiological parameters and soil cover index were monitored for a 12-week period. At the end of the trial, biomass yield, bioconcentration (BFC) and translocation (TF) factors for the main TE as well as phytoextraction potential were determined. Most plants were severely injured by the high pollution levels, showing symptoms of toxicity including chlorosis, mortality and very low biomass yield. However, Indian mustard showed the highest selenium extraction potential (65 mg m(-2)), even under harsh growing conditions. Based on our results, tall fescue and ryegrass, which mainly stored As, Cu, Pb and Zn within roots, could be used effectively for phytostabilization.


Assuntos
Recuperação e Remediação Ambiental , Plantas/metabolismo , Poluentes do Solo/metabolismo , Oligoelementos/metabolismo , Biodegradação Ambiental , Canadá , Resíduos Industriais/análise , Metalurgia , Selênio/análise
10.
Sci Total Environ ; 922: 171290, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431163

RESUMO

Municipal biosolids (MBS) are suggested to be abundant, sustainable, inexpensive fertilisers, rich in phosphorus and nitrogen. However, MBS can also contain glyphosate and phosphonates that can degrade to AMPA. Glyphosate-based herbicides (GBH) are used in field crops all over the world. Most glyphosate generally degrades within a few weeks, mainly as aminomethylphosphonic acid (AMPA). AMPA is more persistent than glyphosate, and can accumulate from one crop year to the next. AMPA is phytotoxic even to glyphosate-resistant crops. The aims of this study were to assess whether MBS applications constitute: 1) an additional source of glyphosate and AMPA to agricultural soils with respect to GBH, 2) a significant source of trace metals, and 3) a partial replacement of mineral fertilisation while maintaining similar yields. To this end, four experimental agricultural sites were selected in Québec (Canada). Soil samples (0-20 cm) were collected to estimate the as yet unmeasured contribution of MBS application to glyphosate and AMPA inputs in agricultural soils. MBS applied in 2021 and 2022 had mean concentrations of 0.69 ± 0.53 µg glyphosate/dry g and 6.26 ± 1.93 µg AMPA/dry g. Despite the presence of glyphosate and AMPA in MBS, monitoring of these two compounds in corn and soybean crops over two years showed no significant difference between plots treated with and without MBS applications. For the same site, yields measured at harvest were similar between treatments. MBS application could thus represent a partial alternative to mineral fertilisers for field crops, while limiting the economic and environmental costs associated with their incineration and landfilling. It is also an economic advantage for agricultural producers given the possibility of using fewer mineral fertilisers and therefore reducing the environmental impact of their use.


Assuntos
Herbicidas , Organofosfonatos , Poluentes do Solo , Glifosato , Solo , Biossólidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise , Glicina , Quebeque , Fertilizantes , Monitoramento Ambiental , Herbicidas/análise , Minerais , Fertilização , Poluentes do Solo/análise
11.
Sci Total Environ ; 926: 171854, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522550

RESUMO

Reducing the environmental impact of Canadian field crop agriculture, including the reliance on conventional synthesised fertilisers, are key societal targets for establishing long-term sustainable practices. Municipal biosolids (MSB) are an abundant, residual organic material, rich in phosphate, nitrogen and other oligo-nutrients, that could be used in conjunction with conventional fertilisers to decrease their use. Though MBS have previously been shown to be an effective fertiliser substitute for different crops, including corn and soybean, there remain key knowledge gaps concerning the impact of MBS on the resident soil bacterial communities in agro-ecosystems. We hypothesised that the MBS fertiliser amendment would not significantly impact the structure or function of the soil bacterial communities, nor contribute to the spread of human pathogenic bacteria, in corn or soybean agricultural systems. In field experiments, fertiliser regimes for both crops were amended with MBS, and compared to corn and soybean plots with standard fertiliser treatments. We repeated this across four different agricultural sites in Quebec, over 2021 and 2022. We sampled MBS-treated, and untreated soils, and identified the composition of the soil bacterial communities via 16S rRNA metabarcoding. We found no indication that the MBS fertiliser amendment altered the structure of the soil bacterial communities, but rather that the soil type and crop identities were the most significant factors in structuring the bacterial communities. Moreover, there was no evidence that the MBS-treated soils were enriched in potential human bacterial pathogens over the two years of our study. Our analysis indicates that not only can MBS function as substitutes for conventional, synthesised fertilisers, but that they also do not disrupt the structure of the resident soil bacterial communities in the short term. Finally, we suggest that the use of MBS in agro-ecosystems poses no greater concern to the public than existing soil bacterial communities. This highlights the significant role MBS could potentially have in reducing the use of conventional industrial fertilisers and improving agricultural production, without risking environmental contamination.


Assuntos
Fertilizantes , Solo , Humanos , Solo/química , Fertilizantes/análise , Biossólidos , Ecossistema , RNA Ribossômico 16S , Canadá , Agricultura , Bactérias , Microbiologia do Solo
12.
PeerJ ; 11: e15239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37159830

RESUMO

Organic waste decomposition can make up substantial amounts of municipal greenhouse emissions during decomposition. Composting has the potential to reduce these emissions as well as generate sustainable fertilizer. However, our understanding of how complex microbial communities change to drive the chemical and biological processes of composting is still limited. To investigate the microbiota associated with organic waste decomposition, initial composting feedstock (Litter), three composting windrows of 1.5 months (Young phase), 3 months (Middle phase) and 12 months (Aged phase) old, and 24-month-old mature Compost were sampled to assess physicochemical properties, plant cell wall composition and the microbial community using 16S rRNA gene amplification. A total of 2,612 Exact Sequence Variants (ESVs) included 517 annotated as putative species and 694 as genera which together captured 57.7% of the 3,133,873 sequences, with the most abundant species being Thermobifida fusca, Thermomonospora chromogena and Thermobifida bifida. Compost properties changed rapidly over time alongside the diversity of the compost community, which increased as composting progressed, and multivariate analysis indicated significant variation in community composition between each time-point. The abundance of bacteria in the feedstock is strongly correlated with the presence of organic matter and the abundance of plant cell wall components. Temperature and pH are the most strongly correlated parameters with bacterial abundance in the thermophilic and cooling phases/mature compost respectively. Differential abundance analysis revealed 810 ESVs annotated as species significantly varied in relative abundance between Litter and Young phase, 653 between the Young and Middle phases, 1182 between Middle and Aged phases and 663 between Aged phase and mature Compost. These changes indicated that structural carbohydrates and lignin degrading species were abundant at the beginning of the thermophilic phase, especially members of the Firmicute and Actinobacteria phyla. A high diversity of species capable of putative ammonification and denitrification were consistently found throughout the composting phases, whereas a limited number of nitrifying bacteria were identified and were significantly enriched within the later mesophilic composting phases. High microbial community resolution also revealed unexpected species which could be beneficial for agricultural soils enriched with mature compost or for the deployment of environmental and plant biotechnologies. Understanding the dynamics of these microbial communities could lead to improved waste management strategies and the development of input-specific composting protocols to optimize carbon and nitrogen transformation and promote a diverse and functional microflora in mature compost.


Assuntos
Archaea , Compostagem , Cavalos , Animais , Archaea/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Roupas de Cama, Mesa e Banho
13.
Front Plant Sci ; 14: 1087035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938004

RESUMO

Traditional treatment of wastewaters is a burden for local governments. Using short rotation coppice willow (SRCW) as vegetal filter has several environmental and economic benefits. Here, we investigated the effect of primary wastewater irrigation on wood structure and composition of the willow cultivar Salix miyabeana 'SX67' following two years of growth. Compared to unirrigated plants (UI), stem sections of plants irrigated with primary wastewater (WWD) showed an unexpected decrease of hydraulic conductance (KS) associated with a decrease in vessel density but not vessel diameter. The majority (86%) of vessels had diameters range groups [20-30[, [30-40[and [40-50[µm and contributed to > 75% of theoretical KS, while the group class [50-60[µm (less than 10% of vessels) still accounted for > 20% of total KS regardless irrigation treatments. WWD significantly alters the chemical composition of wood with an increase of glucan content by 9 to 16.4% and a decrease of extractives by 35.3 to 36.4% when compared to UI or to plants irrigated with potable water (PW). The fertigation did also increase the proportion of the tension wood which highly correlated with glucan content. In the context of energetic transition and mitigation of climate change, such results are of high interest since WWD effectively permit the phytofiltration of large amounts of organic contaminated effluents without impairing SRCW physiology.

14.
Plants (Basel) ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679085

RESUMO

The treatment of leachate by vegetative filters composed of short-rotation willow coppice (SRWC) has been shown to be a cost-effective alternative to conventional and costly methods. However, few studies have considered the treatment capability of willow filters at a scale large enough to meet the industrial requirements of private landfill owners in North America. We report here on a field trial (0.5 ha) in which a willow plantation was irrigated with groundwater (D0) or aged leachate at two different loadings (D1 and D2, which was twice that of D1). Additionally, half of the D2-irrigated plots were amended with phosphorus (D2P). The system, which operated for 131 days, was highly efficient, causing the chemical oxygen demand concentration to drop significantly with the total removal of ammonia (seasonal average removal by a concentration of 99-100%). D2P efficacy was higher than that of D2, indicating that P increased the performance of the system. It also increased the willow biomass 2.5-fold compared to water irrigation. Leaf tissue analysis revealed significant differences in the concentrations of total nitrogen, boron, and zinc, according to the treatment applied, suggesting that the absorption capacity of willows was modified with leachate irrigation. These results indicate that the willow plantation can be effective for the treatment of landfill leachate in respect of environmental requirements.

15.
J Environ Qual ; 51(3): 399-410, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35147980

RESUMO

The addition of organic matter (OM) containing glyphosate during compost production, through the introduction of contaminated plant residues or sewage sludge, presents a risk of hindering the proper OM breakdown carried out by microorganisms and causing the accumulation of glyphosate or aminomethylphosphonic acid (AMPA). To measure the effect of glyphosate and glyphosate-based herbicide (GBH) on OM decomposition as well as the dissipation of glyphosate to AMPA during composting, a controlled-environment experiment was conducted using mesocosm-scale vessels. Analytical-grade (AG) glyphosate (150 mg kg-1 ) and GBH (VisionMAX) equivalent to the amounts applied in agricultural areas (300 mg kg-1 ) were added to a mixture of green residues, which were then composted for 112 d. Sampling after 2, 7, 28, and 112 d showed a negligible effect of glyphosate and GBH on physicochemical properties of the mixture (temperature, OM%, pH, total carbon [C], total nitrogen [N], and C/N ratio), ammonification, nitrification, and phosphate content. No differences between AG glyphosate and GBH treatments were measured. Glyphosate levels decreased significantly after 2 d to reach 53.1 and 71.1% of the initial content for the AG glyphosate and GBH treatments, respectively, and glyphosate dissipation was almost complete after 112 d of composting. Aminomethylphosphonic acid could not be detected at any time during the experiment regardless of the treatment. Our results show that conditions for OM decomposition were maintained despite the addition of glyphosate and suggest that only trace amounts of glyphosate or AMPA are likely to be present in mature compost.


Assuntos
Compostagem , Herbicidas , Compostagem/métodos , Glicina/análogos & derivados , Esgotos , Solo/química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glifosato
16.
Plants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616296

RESUMO

Phytoremediation shows great promise as a plant-based alternative to conventional clean-up methods that are prohibitively expensive. As part of an integrated strategy, the selection of well-adapted plant species as well as planting and management techniques could determine the success of a long-term program. Herein, we conducted an experiment under semi-controlled conditions to screen different plants species with respect to their ability to phytoremediate Zn-contaminated soil excavated from a contaminated site following a train derailment and spillage. The effect of nitrilotriacetic acid (NTA) application on the plants and soil was also comprehensively evaluated, albeit we did not find its use relevant for field application. In less than 100 days, substantial Zn removal occurred in the soil zone proximal to the roots of all the tested plant species. Three perennial herbaceous species were tested, namely, Festuca arundinacea, Medicago sativa, and a commercial mix purposely designed for revegetation; they all showed strong capacity for phytostabilization at the root level but not for phytoextraction. The Zn content in the aboveground biomass of willows was much higher. Furthermore, the degree of growth, physiological measurements, and the Zn extraction yield indicated Salix purpurea 'Fish Creek' could perform better than Salix miyabeana, 'SX67', in situ. Therefore, we suggest implementing an S. purpurea­perennial herbaceous co-cropping strategy at this decade-long-abandoned contaminated site or at similar disrupted landscapes.

17.
Front Plant Sci ; 13: 862259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845654

RESUMO

Volatile compounds (VCs) in grapevine berries play an important role in wine quality; however, such compounds and vine development can be sensitive to environmental conditions. Due to this sensitivity, changes in temperature patterns due to global warming are likely to further impact grape production and berry composition. The aim of this study was to determine the possible effects of different growing-degree day accumulation patterns on berry ripening and composition at harvest. An experimental field was conducted using Vitis sp. L'Acadie blanc, in Nova Scotia, Canada. Using on-the-row mini-greenhouses, moderate temperature increase and reduced ultraviolet (UV) exposure were triggered in grapevines during pre-veraison (inflorescence to the beginning of berry softening), post-veraison (berry softening to full maturity), and whole season (inflorescence to full maturity), while controls were left without treatment. Free and bound VCs were extracted from berries sampled at three different phenological stages between veraison and maturity before analysis by gas chromatography-mass spectrometry (GC-MS). Berries from grapevines exposed to higher temperatures during early berry development (pre-veraison and whole) accumulated significantly higher concentrations of benzene derivatives 2-phenylethanol and benzyl alcohol at harvest, but lower concentrations of hydroxy-methoxy-substituted volatile phenols, terpenes, and C13-norisoprenoids than the control berries. These results illustrate the importance of different environmental interactions in berry composition and suggest that temperature could potentially modulate phenylpropanoid and mevalonate metabolism in developing berries. This study provides insights into the relationships between abiotic conditions and secondary metabolism in grapevine and highlights the significance of early developmental stages on berry quality at harvest.

18.
Tree Physiol ; 30(10): 1273-89, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20739427

RESUMO

Previous studies indicated that high nitrogen fertilization may impact secondary xylem development and alter fibre anatomy and composition. The resulting wood shares some resemblance with tension wood, which has much thicker cell walls than normal wood due to the deposition of an additional layer known as the G-layer. This report compares the short-term effects of high nitrogen fertilization and tree leaning to induce tension wood, either alone or in combination, upon wood formation in young trees of Populus trichocarpa (Torr. & Gray) × P. deltoides Bartr. ex Marsh. Fibre anatomy, chemical composition and transcript profiles were examined in newly formed secondary xylem. Each of the treatments resulted in thicker cell walls relative to the controls. High nitrogen and tree leaning had overlapping effects on chemical composition based on Fourier transform infrared analysis, specifically indicating that secondary cell wall composition was shifted in favour of cellulose and hemicelluloses relative to lignin content. In contrast, the high-nitrogen trees had shorter fibres, whilst the leaning trees had longer fibres that the controls. Microarray transcript profiling carried out after 28 days of treatment identified 180 transcripts that accumulated differentially in one or more treatments. Only 10% of differentially expressed transcripts were affected in all treatments relative to the controls. Several of the affected transcripts were related to carbohydrate metabolism, secondary cell wall formation, nitrogen metabolism and osmotic stress. RT-qPCR analyses at 1, 7 and 28 days showed that several transcripts followed very different accumulation profiles in terms of rate and level of accumulation, depending on the treatment. Our findings suggest that high nitrogen fertilization and tension wood induction elicit largely distinct and molecular pathways with partial overlap. When combined, the two types of environmental cue yielded additive effects.


Assuntos
Caules de Planta/fisiologia , Populus/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Luz , Nitrogênio/metabolismo , Polissacarídeos/análise , Populus/genética , Populus/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Madeira/fisiologia , Xilema/fisiologia
19.
J Fungi (Basel) ; 6(2)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560046

RESUMO

Fast growing, high biomass willows (Salix sp.) have been extensively used for the phytoremediation of trace element-contaminated environments, as they have an extensive root system and they tolerate abiotic stressors such as drought and metal toxicity. Being dual mycorrhizal plants, they can engage single or simultaneous symbiotic associations with both arbuscular mycorrhizal (AM) fungi and ectomycorrhizal (EM) fungi, which can improve overall plant health and growth. The aim of this study was to test the effect of these mycorrhizal fungi on the growth and trace element (TE) extraction potential of willows. A field experiment was carried out where we grew Salix miyabeana clone SX67 on the site of a decommissioned industrial landfill, and inoculated the shrubs with an AM fungus Rhizophagus irregularis, an EM fungus Sphaerosporella brunnea, or a mixture of both. After two growing seasons, the willows inoculated with the EM fungus S. brunnea produced significantly higher biomass. Ba, Cd and Zn were found to be phytoextracted to the aerial plant biomass, where Cd presented the highest bioconcentration factor values in all treatments. Additionally, the plots where the willows received the S. brunnea inoculation showed a significant decrease of Cu, Pb, and Sn soil concentrations. AM fungi inoculation and dual inoculation did not significantly influence biomass production and soil TE levels.

20.
Microorganisms ; 8(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326329

RESUMO

Arbuscular mycorrhizal fungi (AMF) have been shown to reduce plant stress and improve their health and growth, making them important components of the plant-root associated microbiome, especially in stressful conditions such as petroleum hydrocarbons (PHs) contaminated environments. Purposely manipulating the root-associated AMF assemblages in order to improve plant health and modulate their interaction with the rhizosphere microbes could lead to increased agricultural crop yields and phytoremediation performance by the host plant and its root-associated microbiota. In this study, we tested whether repeated inoculations with a Proteobacteria consortium influenced plant productivity and the AMF assemblages associated with the root and rhizosphere of four plant species growing either in non-contaminated natural soil or in sediments contaminated with petroleum hydrocarbons. A mesocosm experiment was performed in a randomized complete block design in four blocks with two factors: (1) substrate contamination (contaminated or not contaminated), and (2) inoculation (or not) with a bacterial consortium composed of ten isolates of Proteobacteria. Plants were grown in a greenhouse over four months, after which the effect of treatments on plant biomass and petroleum hydrocarbon concentrations in the substrate were determined. MiSeq amplicon sequencing, targeting the 18S rRNA gene, was used to assess AMF community structures in the roots and rhizosphere of plants growing in both contaminated and non-contaminated substrates. We also investigated the contribution of plant identity and biotope (plant roots and rhizospheric soil) in shaping the associated AMF assemblages. Our results showed that while inoculation caused a significant shift in AMF communities, the substrate contamination had a much stronger influence on their structure, followed by the biotope and plant identity to a lesser extent. Moreover, inoculation significantly increased plant biomass production and was associated with a decreased petroleum hydrocarbons dissipation in the contaminated soil. The outcome of this study provides knowledge on the factors influencing the diversity and community structure of AMF associated with indigenous plants following repeated inoculation of a bacterial consortium. It highlights the dominance of soil chemical properties, such as petroleum hydrocarbon presence, over biotic factors and inputs, such as plant species and microbial inoculations, in determining the plant-associated arbuscular mycorrhizal fungi communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA