Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 40(47): 9121-9136, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33051351

RESUMO

Abnormalities in interactions between sensory neurons and Schwann cells (SCs) may result in heightened pain processing and chronic pain states. We previously reported that SCs express the NMDA receptor (NMDA-R), which activates cell signaling in response to glutamate and specific protein ligands, such as tissue-type plasminogen activator. Herein, we genetically targeted grin1 encoding the essential GluN1 NMDA-R subunit, conditionally in SCs, to create a novel mouse model in which SCs are NMDA-R-deficient (GluN1- mice). These mice demonstrated increased sensitivity to light touch, pinprick, and thermal hyperalgesia in the absence of injury, without associated changes in motor function. Ultrastructural analysis of adult sciatic nerve in GluN1- mice revealed increases in the density of Aδ fibers and Remak bundles and a decrease in the density of Aß fibers, without altered g-ratios. Abnormalities in adult Remak bundle ultrastructure were also present including aberrant C-fiber ensheathment, distances between axons, and increased poly-axonal pockets. Developmental and post radial sorting defects contributed to altered nerve fiber densities in adult. Uninjured sciatic nerves in GluN1- mice did not demonstrate an increase in neuroinflammatory infiltrates. Transcriptome profiling of dorsal root ganglia (DRGs) revealed 138 differentially regulated genes in GluN1- mice. One third of the regulated genes are known to be involved in pain processing, including sprr1a, npy, fgf3, atf3, and cckbr, which were significantly increased. The intraepidermal nerve fiber density (IENFD) was significantly decreased in the skin of GluN1- mice. Collectively, these findings demonstrate that SC NMDA-R is essential for normal PNS development and for preventing development of pain states.SIGNIFICANCE STATEMENT Chronic unremitting pain is a prevalent medical condition; however, the molecular mechanisms that underlie heightened pain processing remain incompletely understood. Emerging data suggest that abnormalities in Schwann cells (SCs) may cause neuropathic pain. We established a novel mouse model for small fiber neuropathy (SFN) in which grin1, the gene that encodes the NMDA receptor (NMDA-R) GluN1 subunit, is deleted in SCs. These mice demonstrate hypersensitivity in pain processing in the absence of nerve injury. Changes in the density of intraepidermal small fibers, the ultrastructure of Remak bundles, and the transcriptome of dorsal root ganglia (DRGs) provide possible explanations for the increase in pain processing. Our results support the hypothesis that abnormalities in communication between sensory nerve fibers and SCs may result in pain states.


Assuntos
Hiperalgesia/genética , Proteínas do Tecido Nervoso/genética , Dor/genética , Dor/fisiopatologia , Receptores de N-Metil-D-Aspartato/genética , Células de Schwann/ultraestrutura , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fibras Nervosas/fisiologia , Proteínas do Tecido Nervoso/deficiência , Estimulação Física , Cultura Primária de Células , Receptores de N-Metil-D-Aspartato/deficiência , Nervo Isquiático/ultraestrutura , Transdução de Sinais
2.
Am J Pathol ; 187(4): 767-780, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28167044

RESUMO

Villous cytotrophoblasts are epithelial stem cells of the early human placenta, able to differentiate either into syncytiotrophoblasts in floating chorionic villi or extravillous trophoblasts (EVTs) at the anchoring villi. The signaling pathways regulating differentiation into these two lineages are incompletely understood. The bulk of placental growth and development in the first trimester occurs under low oxygen tension. One major mechanism by which oxygen regulates cellular function is through the hypoxia-inducible factor (HIF), a transcription factor complex stabilized under low oxygen tension to mediate cellular responses, including cell fate decisions. HIF is known to play a role in trophoblast differentiation in rodents; however, its role in human trophoblast differentiation is poorly understood. Using RNA profiling of sorted populations of primary first-trimester trophoblasts, we evaluated the first stage of EVT differentiation, the transition from epidermal growth factor receptor+ villous cytotrophoblasts into human leukocyte antigen-G+ proximal column EVT (pcEVT) and identified hypoxia as a major pcEVT-associated pathway. Using primary cytotrophoblasts, we determined that culture in low oxygen directs differentiation preferentially toward human leukocyte antigen-G+ pcEVT, and that an intact HIF complex is required for this process. Finally, using global RNA profiling, we identified integrin-linked kinase and associated cytoskeletal remodeling and adhesion to be among HIF-dependent pcEVT-associated signaling pathways. Taken together, we propose that oxygen regulates EVT differentiation through HIF-dependent modulation of various cell adhesion and morphology-related pathways.


Assuntos
Diferenciação Celular , Fator 1 Induzível por Hipóxia/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Hipóxia Celular/genética , Separação Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Oxigênio/farmacologia , Gravidez , Primeiro Trimestre da Gravidez/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
3.
Acta Neuropathol ; 135(3): 459-474, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29196813

RESUMO

Hexanucleotide repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (C9 ALS). The main hypothesized pathogenic mechanisms are C9orf72 haploinsufficiency and/or toxicity from one or more of bi-directionally transcribed repeat RNAs and their dipeptide repeat proteins (DPRs) poly-GP, poly-GA, poly-GR, poly-PR and poly-PA. Recently, nuclear import and/or export defects especially caused by arginine-containing poly-GR or poly-PR have been proposed as significant contributors to pathogenesis based on disease models. We quantitatively studied and compared DPRs, nuclear pore proteins and C9orf72 protein in clinically related and clinically unrelated regions of the central nervous system, and compared them to phosphorylated TDP-43 (pTDP-43), the hallmark protein of ALS. Of the five DPRs, only poly-GR was significantly abundant in clinically related areas compared to unrelated areas (p < 0.001), and formed dendritic-like aggregates in the motor cortex that co-localized with pTDP-43 (p < 0.0001). While most poly-GR dendritic inclusions were pTDP-43 positive, only 4% of pTDP-43 dendritic inclusions were poly-GR positive. Staining for arginine-containing poly-GR and poly-PR in nuclei of neurons produced signals that were not specific to C9 ALS. We could not detect significant differences of nuclear markers RanGap, Lamin B1, and Importin ß1 in C9 ALS, although we observed subtle nuclear changes in ALS, both C9 and non-C9, compared to control. The C9orf72 protein itself was diffusely expressed in cytoplasm of large neurons and glia, and nearly 50% reduced, in both clinically related frontal cortex and unrelated occipital cortex, but not in cerebellum. In summary, sense-encoded poly-GR DPR was unique, and localized to dendrites and pTDP43 in motor regions of C9 ALS CNS. This is consistent with new emerging ideas about TDP-43 functions in dendrites.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos/metabolismo , Medula Espinal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Proteína C9orf72/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Expansão das Repetições de DNA , Dendritos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA