Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 574(7778): 343-352, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31619791

RESUMO

A hidden carbon cycle exists inside Earth. Every year, megatons of carbon disappear into subduction zones, affecting atmospheric carbon dioxide and oxygen over Earth's history. Here we discuss the processes that move carbon towards subduction zones and transform it into fluids, magmas, volcanic gases and diamonds. The carbon dioxide emitted from arc volcanoes is largely recycled from subducted microfossils, organic remains and carbonate precipitates. The type of carbon input and the efficiency with which carbon is remobilized in the subduction zone vary greatly around the globe, with every convergent margin providing a natural laboratory for tracing subducting carbon.


Assuntos
Ciclo do Carbono , Planeta Terra , Carbono/química , Fenômenos Geológicos , Erupções Vulcânicas
2.
Nature ; 589(7840): E1, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33303960
3.
Nature ; 518(7539): 395-8, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25642964

RESUMO

Processes of melt generation and transport beneath back-arc spreading centres are controlled by two endmember mechanisms: decompression melting similar to that at mid-ocean ridges and flux melting resembling that beneath arcs. The Lau Basin, with an abundance of spreading ridges at different distances from the subduction zone, provides an opportunity to distinguish the effects of these two different melting processes on magma production and crust formation. Here we present constraints on the three-dimensional distribution of partial melt inferred from seismic velocities obtained from Rayleigh wave tomography using land and ocean-bottom seismographs. Low seismic velocities beneath the Central Lau Spreading Centre and the northern Eastern Lau Spreading Centre extend deeper and westwards into the back-arc, suggesting that these spreading centres are fed by melting along upwelling zones from the west, and helping to explain geochemical differences with the Valu Fa Ridge to the south, which has no distinct deep low-seismic-velocity anomalies. A region of low S-wave velocity, interpreted as resulting from high melt content, is imaged in the mantle wedge beneath the Central Lau Spreading Centre and the northeastern Lau Basin, even where no active spreading centre currently exists. This low-seismic-velocity anomaly becomes weaker with distance southward along the Eastern Lau Spreading Centre and the Valu Fa Ridge, in contrast to the inferred increase in magmatic productivity. We propose that the anomaly variations result from changes in the efficiency of melt extraction, with the decrease in melt to the south correlating with increased fractional melting and higher water content in the magma. Water released from the slab may greatly reduce the melt viscosity or increase grain size, or both, thereby facilitating melt transport.

4.
Nature ; 500(7460): 68-72, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23903749

RESUMO

Convergent margin volcanism is ultimately fed by magmas generated in the mantle, but the connection between the mantle and the eruption at the surface is typically obscured by cooling, crystallization and magma mixing within the crust. Geophysical techniques are also not very effective in the lower and middle crust, where seismic events are rare and resolution is generally poor. It has thus been unclear how fast mantle-derived magmas transit the crust and recharge crustal magma chambers. Here we use diffusion modelling of nickel zonation profiles in primitive olivines from diverse primary melts to show how mantle recharge may occur on timescales as short as eruptions themselves. In Irazú volcano in Costa Rica, magmas apparently ascend from their source region in the mantle through crust about 35 kilometres thick in just months to years, recharging hybrid basaltic andesites over the course of the eruption. These results show that large stratovolcanoes with shallow magma chambers may still preserve the deep record of their mantle origin in olivine crystals. This approach--documenting magma ascent timescales from the mantle beneath a convergent margin stratovolcano--can be applied to other eruptions that record magma mixing with recharge melts. Signs of volcanic unrest are typically monitored at the surface or upper crust; new efforts should look deeper, tracking magma movement from the base of the crust to the surface in the months to years before eruptions.

5.
Sci Adv ; 9(26): eadf3024, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379389

RESUMO

Subduction transports volatiles between Earth's mantle, crust, and atmosphere, ultimately creating a habitable Earth. We use isotopes to track carbon from subduction to outgassing along the Aleutian-Alaska Arc. We find substantial along-strike variations in the isotopic composition of volcanic gases, explained by different recycling efficiencies of subducting carbon to the atmosphere via arc volcanism and modulated by subduction character. Fast and cool subduction facilitates recycling of ~43 to 61% sediment-derived organic carbon to the atmosphere through degassing of central Aleutian volcanoes, while slow and warm subduction favors forearc sediment removal, leading to recycling of ~6 to 9% altered oceanic crust carbon to the atmosphere through degassing of western Aleutian volcanoes. These results indicate that less carbon is returned to the deep mantle than previously thought and that subducting organic carbon is not a reliable atmospheric carbon sink over subduction time scales.

6.
Science ; 375(6585): 1169-1172, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271312

RESUMO

Vanguard efforts in forecasting volcanic eruptions are turning to physics-based models, which require quantitative estimates of magma conditions during pre-eruptive storage. Below active arc volcanoes, observed magma storage depths vary widely (~0 to 20 kilometers) and are commonly assumed to represent levels of neutral buoyancy. Here we show that geophysically observed magma depths (6 ± 3 kilometers) are greater than depths of neutral buoyancy, ruling out this commonly assumed control. Observed depths are instead consistent with predicted depths of water degassing. Intrinsically wetter magmas degas water and crystallize deeper than dry magmas, resulting in viscosity increases that lead to deeper stalling of ascending magma. The water-depth relationship provides a critical constraint for forecasting models by connecting depth of eruption initiation to its volatile fuel.

7.
Sci Adv ; 6(49)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33268367

RESUMO

Oceanic crust and sediments are the primary K sinks for seawater, and they deliver considerable amounts of K to the mantle via subduction. Historically, these crustal components were not studied for K isotopes because of the lack of analytical precision to differentiate terrestrial variations. Here, we report a high-precision dataset that reveals substantial variability in oceanic plates and provides further insights into the oceanic K cycle. Sixty-nine sediments worldwide yield a broad δ41K range from -1.3 to -0.02‰. The unusually low values are indicative of release of heavy K during continental weathering and uptake of light K during submarine diagenetic alteration. Twenty samples of altered western Pacific crust from ODP Site 801 display δ41K from -0.60 to -0.05‰, averaging at -0.32‰. Our results indicate that submarine alteration of oceanic plates is essential for generating the high-δ41K signature of seawater. These regionally varying subducting components are heterogeneous K inputs to the mantle.

8.
Sci Rep ; 9(1): 5442, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931997

RESUMO

The global carbon dioxide (CO2) flux from subaerial volcanoes remains poorly quantified, limiting our understanding of the deep carbon cycle during geologic time and in modern Earth. Past attempts to extrapolate the global volcanic CO2 flux have been biased by observations being available for a relatively small number of accessible volcanoes. Here, we propose that the strong, but yet unmeasured, CO2 emissions from several remote degassing volcanoes worldwide can be predicted using regional/global relationships between the CO2/ST ratio of volcanic gases and whole-rock trace element compositions (e.g., Ba/La). From these globally linked gas/rock compositions, we predict the CO2/ST gas ratio of 34 top-degassing remote volcanoes with no available gas measurements. By scaling to volcanic SO2 fluxes from a global catalogue, we estimate a cumulative "unmeasured" CO2 output of 11.4 ± 1.1 Mt/yr (or 0.26 ± 0.02·1012 mol/yr). In combination with the measured CO2 output of 27.4 ± 3.6 Mt/yr (or 0.62 ± 0.08·1012 mol/yr), our results constrain the time-averaged (2005-2015) cumulative CO2 flux from the Earth's 91 most actively degassing subaerial volcanoes at 38.7 ± 2.9 Mt/yr (or 0.88 ± 0.06·1012 mol/yr).

9.
Science ; 365(6457): 978-979, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31488671
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA