Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0082923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882520

RESUMO

IMPORTANCE: Several coronaviruses (CoVs) have been detected in domesticated, farmed, and wild meso-carnivores, causing a wide range of diseases and infecting diverse species, highlighting their important but understudied role in the epidemiology of these viruses. Assessing the viral diversity hosted in wildlife species is essential to understand their significance in the cross-species transmission of CoVs. Our focus here was on CoV discovery in meso-carnivores in the Northeast United States as a potential "hotspot" area with high density of humans and urban wildlife. This study identifies novel alphacoronaviruses circulating in multiple free-ranging wild and domestic species in this area and explores their potential epidemiological importance based on regions of the Spike gene, which are relevant for virus-host interactions.


Assuntos
Alphacoronavirus , Carnívoros , Fezes , Saliva , Animais , Humanos , Alphacoronavirus/classificação , Alphacoronavirus/genética , Alphacoronavirus/isolamento & purificação , Animais Domésticos/virologia , Animais Selvagens/virologia , Carnívoros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Fezes/virologia , Interações entre Hospedeiro e Microrganismos , New England/epidemiologia , Saliva/virologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
2.
Glob Chang Biol ; 28(5): 1705-1724, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34889003

RESUMO

The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements. Effectively identifying and managing zoonotic hazards requires understanding the socio-ecological processes driving hazard distribution and pathogen prevalence in dynamic and heterogeneous urban landscapes. Despite increasing awareness of the human health impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into public health management plans remains limited. Here we discuss how landscape patterns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly urbanized cities (HUCs) in temperate climates to promote their efficient and effective management by a multi-sectoral coalition of public health stakeholders. We describe how to interpret both direct and indirect ecological processes, incorporate spatial scale, and evaluate networks of connectivity specific to different zoonotic hazards to promote biologically-informed and targeted decision-making. Using New York City, USA as a case study, we identify major zoonotic threats, apply knowledge of relevant ecological factors, and highlight opportunities and challenges for research and intervention. We aim to broaden the toolbox of urban public health stakeholders by providing ecologically-informed, practical guidance for the evaluation and management of zoonotic hazards.


Assuntos
COVID-19 , Pandemias , Animais , Cidades , Humanos , SARS-CoV-2 , Zoonoses/epidemiologia
3.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745528

RESUMO

Small to mid-sized carnivores, or meso-carnivores, comprise a group of diverse mammals, many of which can adapt to anthropogenically disturbed environments. Wild meso-carnivores living in urban areas may get exposed to or spread pathogens to other species, including stray/feral domestic animals. Several coronaviruses (CoVs) have been detected in domesticated and farmed meso-carnivores, but knowledge of CoVs circulating in free-ranging wild meso-carnivores remains limited. In this study, we analyzed 321 samples collected between 2016 and 2022 from 9 species of free-ranging wild meso-carnivores and stray/feral domestic cats in the northeastern United States. Using a pan-CoV PCR, we screened tissues, feces, and saliva, nasal, and rectal swabs. We detected CoV RNA in fecal and saliva samples of animals in four species: fisher (Pekania pennanti), bobcat (Lynx rufus), red fox (Vulpes vulpes), and domestic cat (Felis catus). Next-generation sequencing revealed that all these viruses belonged to the Luchacovirus subgenus (Alphacoronavirus genus), previously reported only in rodents and lagomorphs (i.e., rabbits). Genetic comparison of the 3'-end of the genome (~12,000bp) revealed that although the viruses detected group with, and have a genetic organization similar to other luchacoviruses, they are genetically distinct from those from rodents and lagomorphs. Genetic characterization of the spike protein revealed that the meso-carnivore luchacoviruses do not have an S1/S2 cleavage motif but do have highly variable structural loops containing cleavage motifs similar to those identified in certain pathogenic CoVs. This study highlights the importance of characterizing the spike protein of CoVs in wild species for further targeted epidemiologic monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA