Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682570

RESUMO

The Western diet, rich in lipids and in n-6 polyunsaturated fatty acids (PUFAs), favors gut dysbiosis observed in Crohn's disease (CD). The aim of this study was to assess the effects of rebalancing the n-6/n-3 PUFA ratio in CEABAC10 transgenic mice that mimic CD. Mice in individual cages with running wheels were randomized in three diet groups for 12 weeks: high-fat diet (HFD), HFD + linseed oil (HFD-LS-O) and HFD + extruded linseed (HFD-LS-E). Then, they were orally challenged once with the Adherent-Invasive Escherichia coli (AIEC) LF82 pathobiont. After 12 weeks of diet, total energy intake, body composition, and intestinal permeability were not different between groups. After the AIEC-induced intestinal inflammation, fecal lipocalin-2 concentration was lower at day 6 in n-3 PUFAs supplementation groups (HFD-LS-O and HFD-LS-E) compared to HFD. Analysis of the mucosa-associated microbiota showed that the abundance of Prevotella, Paraprevotella, Ruminococcus, and Clostridiales was higher in the HFD-LS-E group. Butyrate levels were higher in the HFD-LS-E group and correlated with the Firmicutes/Proteobacteria ratio. This study demonstrates that extruded linseed supplementation had a beneficial health effect in a physically active mouse model of CD susceptibility. Additional studies are required to better decipher the matrix influence in the linseed supplementation effect.


Assuntos
Doença de Crohn , Linho , Microbiota , Animais , Doença de Crohn/tratamento farmacológico , Doença de Crohn/microbiologia , Dieta Hiperlipídica , Suplementos Nutricionais , Modelos Animais de Doenças , Escherichia coli , Mucosa Intestinal/microbiologia , Óleo de Semente do Linho/farmacologia , Camundongos , Camundongos Transgênicos
2.
Nutrients ; 13(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684532

RESUMO

High-intensity interval training (HIIT) and linseed oil (LO) supplementation are effective strategies to reduce obesity-induced oxidative stress. Our aim was to determine whether the HIIT + LO combination prevents obesity-induced oxidative stress in high fat diet (HFD)-fed rats. HFD-fed 8-week-old, male, Wistar rats were subdivided in four groups: HFD, LO (2% of sunflower oil replaced with 2% of LO in the HFD), HIIT (4 days/week for 12 weeks), and HIIT + LO. Wistar rats fed a low-fat diet (LFD) were used as controls. Epididymal and subcutaneous adipose tissue, gastrocnemius muscle, liver, and plasma samples were collected to measure oxidative stress markers (AOPP, oxLDL), antioxidant (SOD, CAT, and GPx activities) and pro-oxidant (NOx and XO) enzyme activities. Compared with the LFD, the HFD altered the pro/antioxidant status in different tissues (increase of AOPP, oxLDL, SOD and catalase activities in plasma, and SOD activity increase in liver and decrease in adipose tissues) but not in gastrocnemius. LO upregulated CAT activity and decreased NOx in liver. HIIT alleviated HFD negative effects in liver by reducing SOD and NOx activities. Moreover, the HIIT + LO combination potentiated SOD activity upregulation in subcutaneous tissue. HIIT and LO supplementation have independent beneficial effects on the pro/antioxidant balance. Their association promotes SOD activity in subcutaneous adipose tissue.


Assuntos
Suplementos Nutricionais , Comportamento Alimentar , Treinamento Intervalado de Alta Intensidade , Óleo de Semente do Linho/farmacologia , Obesidade/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Catalase/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nitratos/metabolismo , Obesidade/sangue , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Nutrients ; 13(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066988

RESUMO

Obesity and prediabetes are the two strongest risk factors of type 2 diabetes. It has been reported that TOTUM-63, a polyphenol-rich plant extract, has beneficial effects on body weight (BW) and insulin resistance in mice fed a high fat diet (HFD). The study aim was to determine whether high-intensity interval training (HIIT) and/or TOTUM-63 supplementation improved body composition and glycemic control and gut microbiota composition in a Western diet-induced obesity rat model. Wistar rats received a standard diet (CTRL; control; n = 12) or HFD (HFD; n = 48) for 16 weeks. Then, HFD rats were divided in four groups: HFD, HFD + TOTUM-63 (T63), HFD + HIIT (HIIT), and HFD + HIIT +T63 (HIIT + T63). Training was performed 4 days/week for 12 weeks. TOTUM-63 was included in diet composition (2%). The HIIT + T63 combination significantly limited BW gain, without any energy intake modulation, and improved glycemic control. BW variation was correlated with increased α-diversity of the colon mucosa microbiota in the HIIT + T63 group. Moreover, the relative abundance of Anaeroplasma, Christensenellaceae and Oscillospira was higher in the HIIT + T63 group. Altogether, these results suggest that the HIIT and TOTUM-63 combination could be proposed for the management of obesity and prediabetes.


Assuntos
Suplementos Nutricionais , Treinamento Intervalado de Alta Intensidade , Obesidade/terapia , Condicionamento Físico Animal/métodos , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Animais , Composição Corporal/fisiologia , Terapia Combinada , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Controle Glicêmico , Mucosa Intestinal/microbiologia , Masculino , Obesidade/etiologia , Obesidade/fisiopatologia , Estado Pré-Diabético/etiologia , Estado Pré-Diabético/fisiopatologia , Estado Pré-Diabético/terapia , Ratos , Ratos Wistar , Aumento de Peso/fisiologia
4.
Nutrients ; 13(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673609

RESUMO

Obesity, a major public health problem, is the consequence of an excess of body fat and biological alterations in the adipose tissue. Our aim was to determine whether high-intensity interval training (HIIT) and/or α-linolenic acid supplementation (to equilibrate the n-6/n-3 polyunsaturated fatty acids (PUFA) ratio) might prevent obesity disorders, particularly by modulating the mucosa-associated microbiota. Wistar rats received a low fat diet (LFD; control) or high fat diet (HFD) for 16 weeks to induce obesity. Then, animals in the HFD group were divided in four groups: HFD (control), HFD + linseed oil (LO), HFD + HIIT, HFD + HIIT + LO. In the HIIT groups, rats ran on a treadmill, 4 days.week-1. Erythrocyte n-3 PUFA content, body composition, inflammation, and intestinal mucosa-associated microbiota composition were assessed after 12 weeks. LO supplementation enhanced α-linolenic acid (ALA) to docosahexaenoic acid (DHA) conversion in erythrocytes, and HIIT potentiated this conversion. Compared with HFD, HIIT limited weight gain, fat mass accumulation, and adipocyte size, whereas LO reduced systemic inflammation. HIIT had the main effect on gut microbiota ß-diversity, but the HIIT + LO association significantly increased Oscillospira relative abundance. In our conditions, HIIT had a major effect on body fat mass, whereas HIIT + LO improved ALA conversion to DHA and increased the abundance of Oscillospira bacteria in the microbiota.


Assuntos
Clostridiales/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/metabolismo , Condicionamento Físico Animal , Ácido alfa-Linolênico/farmacologia , Adipócitos , Animais , Glicemia , Composição Corporal , Eritrócitos , Ácidos Graxos , Ácidos Graxos Voláteis/química , Fezes/química , Microbioma Gastrointestinal , Teste de Tolerância a Glucose , Treinamento Intervalado de Alta Intensidade , Mucosa Intestinal , Distribuição Aleatória , Ratos , Ratos Wistar , Ácido alfa-Linolênico/administração & dosagem
5.
Biochimie ; 179: 275-280, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32920170

RESUMO

In around 10% of SARS-CoV-2 infected patients, coronavirus disease-2019 (Covid-19) symptoms are complicated with a severe lung damage called Acute Respiratory Distress Syndrome (ARDS), which is often lethal. ARDS is mainly associated with an uncontrolled overproduction of immune cells and cytokines, called "cytokine storm syndrome"; it appears 7-15 days following the onset of symptoms, leading to systemic inflammation and multiple organ failure. Because they are well-known metabolic precursors of specialized pro-resolving lipid mediators (SPMs), omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs) could help improve the resolution of the inflammatory balance, limiting therefore the level and duration of the critical inflammatory period. Omega-3 LC-PUFAs may also interact at different stages of the viral infection, notably on the virus entry and replication. In the absence of demonstrated treatment and while waiting for vaccine possibility, the use of omega-3 LC-PUFAs deserve therefore to be considered, based on previous clinical studies suggesting that omega-3 supplementation could improve clinical outcomes of critically ill patients at the acute phase of ARDS. In this context, it is crucial to remind that the omega-3 PUFA dietary intake levels in Western countries remains largely below the current recommendations, considering both the omega-3 precursor α-linolenic acid (ALA) and long chain derivatives such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). An optimized omega-3 PUFAs status could be helpful to prevent infectious diseases, including Covid-19.


Assuntos
COVID-19/complicações , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Animais , Ensaios Clínicos como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA