RESUMO
The MHC-related 1 (MR1) protein is a monomorphic, evolutionarily conserved MHC class I-like molecule, which is necessary for the development and functions of mucosal-associated invariant T (MAIT) cells, a new subset of innate-like lymphocytes. Multiple isoforms of the MR1 gene are naturally transcribed, but only the full-length MR1A has been analyzed so far. Using transfected cell lines expressing an alternative spliced transcript, MR1B, characterized by the absence of the α3 extracellular domain, we show that MR1B is transcribed and glycosylated but remains in an immature (endoglycosidase H-sensitive) state. MR1B mostly accumulates in the ER, without interacting with proteins of the peptide-loading complex such as tapasin. Interestingly, it is nevertheless found expressed at the cell surface, independently of ß2-microglobulin, in a homodimeric form. MR1B is functional as its overexpression induces MAIT cell activation in vitro in the presence of bacteria. Altogether, these data show that MR1B displays several remarkable features, and probably plays a physiological role complementary to MR1A with respect to MAIT cell development and/or function.
Assuntos
Processamento Alternativo , Membrana Celular/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Leucócitos Mononucleares/metabolismo , Linfócitos T/metabolismo , Linhagem Celular , Membrana Celular/genética , Dimerização , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Antígenos de Histocompatibilidade Menor , Mucosa/citologia , Mucosa/imunologia , Plasmídeos , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , TransfecçãoRESUMO
The ATP-binding cassette (ABC) transporters are one of the largest evolutionarily conserved families of proteins. They are characterized by the presence of nucleotide-binding domains (NBDs), which are highly conserved among organisms. In the present study, we used human and protozoan ABC sequences, and ATP-binding consensus motifs to screen the Toxoplasma gondii TwinScan2 predicted proteins database. We identified 24 ABC open reading frames (ORFs), whose deduced amino acid sequences exhibited all the typical biochemical features of the ABC family members. Fifteen of them clustered into five of the seven families of human ABC proteins: six ABCBs (drug, peptides and lipid export), two ABCCs (organic anion conjugates and drug export), one ABCE (Rnase L inhibitor, RLI, antibiotic resistance and translation regulation), one ABCF (drug resistance and regulation of gene expression) and five ABCGs (drug export and resistance). The nine other ORFs were represented by four ABCHs (energy-generating subunits), four SMCs (structural maintenance of chromosomes) and one member of unclear origin, whose closest homologue was the yeast Elf1 protein (mRNA export factor). A notable feature of the Toxoplasma ABC superfamily seems to be the absence of genes encoding ABCA and ABCD members. Expression analysis of ABC genes in tachyzoite and bradyzoite stages revealed the presence of ABC transcripts for all genes studied. Further research on the implication of these ABC proteins will increase our knowledge of the basic biology of Toxoplasma and provide the opportunity to identify novel therapeutic targets. To our knowledge, this is the first report of ABC transporters in T. gondii.