Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(9): e0215323, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39162561

RESUMO

Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid croplands competition between human food and animal feed. Agricultural co-products such as soybean meals have become important components of the circular economy thanks to their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet of monogastric animals, especially fungal carbohydrate-active enzymes (CAZymes). Here, we describe a time-course production and analysis of Aspergillus terreus secretomes for the identification of CAZymes able to enhance the digestibility of soybean meals. Functional assays revealed that the release of nutrients and the degradation of pectins in soybean meals can be tightly interconnected. Using a comparative proteomics approach, we identified several fungal pectin-degrading enzymes leading to increased assimilable nutrients in the soluble fraction of soybean meals. Our results reinforce the importance of deconstructing pectic polysaccharides in feedstuffs and contribute to sharpen our understanding of the fungal enzymatic interplays involved in pectin hydrolysis.IMPORTANCEIn the present study, we developed a strategy to identify the key fungal enzymatic activities involved in the improvement of soybean meal (SBM) digestibility. Our data unravel the importance of pectin degradation for the release of nutrients from SBM and provide some insights regarding the degradation of rhamnogalacturonan-I (RG-I) by ascomycetes. Indeed, the hydrolysis of pectins and RG-I by human microbiota is well documented in the literature, but our knowledge of the fungal CAZymes at play for the degradation of soybean pectins remains hitherto underexplored. Due to its wide use in animal feed, improving the digestibility of SBM by enzymatic treatments is a current challenge for feed additive suppliers. Since non-starch polysaccharides and pectins have often been reported for their anti-nutritional role in SBM, we believe this study will provide new avenues toward the improvement of enzymatic cocktails for animal nutrition and health.


Assuntos
Ração Animal , Aspergillus , Glycine max , Pectinas , Aspergillus/metabolismo , Aspergillus/enzimologia , Pectinas/metabolismo , Glycine max/metabolismo , Ração Animal/análise , Proteínas Fúngicas/metabolismo , Digestão
2.
Biotechnol Adv ; 65: 108145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030553

RESUMO

Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.


Assuntos
Ração Animal , Polissacarídeos , Animais , Humanos , Polissacarídeos/metabolismo , Grão Comestível/metabolismo , Enzimas , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA