Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(21): 9671-6, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20457893

RESUMO

Localized chromatin modifications of histone tails play an important role in regulating gene transcription, and aberration of these processes leads to carcinogenesis. Methylated histone lysine residues, a key player in chromatin remodeling, are demethylated by the JmjC class of enzymes. Here we show that JMJD5 (now renamed KDM8), a JmjC family member, demethylates H3K36me2 and is required for cell cycle progression. Chromatin immunoprecipitation assays applied to human genome tiling arrays in conjunction with RNA microarray revealed that KDM8 occupies the coding region of cyclin A1 and directly regulates transcription. Mechanistic analyses showed that KDM8 functioned as a transcriptional activator by inhibiting HDAC recruitment via demethylation of H3K36me2, an epigenetic repressive mark. Tumor array experiments revealed KDM8 is overexpressed in several types of cancer. In addition, loss-of-function studies in MCF7 cells leads to cell cycle arrest. These studies identified KDM8 as an important cell cycle regulator.


Assuntos
Proliferação de Células , Ciclina A1/metabolismo , Histona Desmetilases/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fases de Leitura Aberta , Acetilação , Linhagem Celular Tumoral , Ciclina A1/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Neoplasias/genética , Interferência de RNA , Transcrição Gênica
2.
Cancer Res ; 67(14): 6591-8, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17638868

RESUMO

Transforming growth factor alpha (TGFalpha) is a potent inducer of cellular transformation, through its binding and activation of the epidermal growth factor receptor (EGFR). Previous studies in our laboratory showed that EGFR could also be affected by the glycoprotein MUC1, which inhibits ligand-stimulated degradation of EGFR in breast epithelial cell lines. To determine the effect of Muc1 expression on TGFalpha/EGFR-dependent breast transformation, we crossed the WAP-TGFalpha transgenic mouse model of breast cancer onto a Muc1-null background. We found that the loss of Muc1 expression dramatically affects mammary gland transformation and progression. Although 100% of WAP-TGFalpha/Muc1(+/+) mice form mammary gland tumors by 1 year, only 37% of WAP-TGFalpha/Muc1(-/-) form tumors by this time. This difference is also associated with a delay in onset, with a doubling of onset time observed in the WAP-TGFalpha/Muc1(-/-) compared with the WAP-TGFalpha/Muc1(+/+) mice. Analysis of signal transduction pathways revealed that activation of cyclin D1 expression is significantly suppressed in tumors derived from WAP-TGFalpha/Muc1(-/-) animals compared with those expressing Muc1. The loss of Muc1 expression also results in a significant inhibition in the formation of hyperplastic lesions during tumor progression. On the C57Bl/6 inbred background, pulmonary lesions were observed in 28 of 29 WAP-TGFalpha/Muc1(+/+) animals (including one metastatic pulmonary adenocarcinoma and multiple perivascular lymphomas), although none were detected in the WAP-TGFalpha/Muc1(-/-) animals. Together, these data indicate that Muc1 is an important modulator of TGFalpha-dependent tumor progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Mucina-1/fisiologia , Fator de Crescimento Transformador alfa/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Metástase Neoplásica , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA