Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 146(1): 140-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17993548

RESUMO

The outer tissues of dicotyledonous plant roots (i.e. epidermis, cortex, and endodermis) are clearly organized in distinct concentric layers in contrast to the diarch to polyarch vascular tissues of the central stele. Up to now, the outermost layer of the stele, the pericycle, has always been regarded, in accordance with the outer tissue layers, as one uniform concentric layer. However, considering its lateral root-forming competence, the pericycle is composed of two different cell types, with one subset of cells being associated with the xylem, showing strong competence to initiate cell division, whereas another group of cells, associated with the phloem, appears to remain quiescent. Here, we established, using detailed microscopy and specific Arabidopsis thaliana reporter lines, the existence of two distinct pericycle cell types. Analysis of two enhancer trap reporter lines further suggests that the specification between these two subsets takes place early during development, in relation with the determination of the vascular tissues. A genetic screen resulted in the isolation of mutants perturbed in pericycle differentiation. Detailed phenotypical analyses of two of these mutants, combined with observations made in known vascular mutants, revealed an intimate correlation between vascular organization, pericycle fate, and lateral root initiation potency, and illustrated the independence of pericycle differentiation and lateral root initiation from protoxylem differentiation. Taken together, our data show that the pericycle is a heterogeneous cell layer with two groups of cells set up in the root meristem by the same genetic pathway controlling the diarch organization of the vasculature.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Divisão Celular , Regulação da Expressão Gênica de Plantas , Mutação , Transativadores/genética , Transativadores/metabolismo
2.
Development ; 133(15): 2973-81, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16818444

RESUMO

Mutations in the ARGONAUTE gene ZIPPY(ZIP)/AGO7 in Arabidopsis accelerate the juvenile-to-adult transition. A screen for mutations that suppress this precocious phenotype yielded alleles of two auxin-related transcription factors known to be upregulated in zip: ETTIN (ETT)/ARF3 and ARF4. Mutations in ETT/ARF3 and ARF4 delay the expression of adult traits, demonstrating that these genes have non-redundant roles in shoot maturation. ZIP is not generally required for the production of trans-acting (ta) siRNAs, but is required for the production and/or stability of tasiR-ARF, a ta-siRNA that targets both ETT/ARF3 and ARF4. tasiR-ARF is absent in zip-2, and overexpression of a tasiR-ARF-insensitive form of ETT mimics the zip phenotype. We conclude that the precocious phenotype of zip is attributable to the absence of tasiR-ARF-mediated repression of ETT and ARF4. The abundance of tasiR-ARF, ETT/ARF3 and ARF4 RNA does not change during vegetative development. This result suggests that tasiR-ARF regulation establishes the threshold at which leaves respond to a temporal signal, rather than being a component of this signal.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Sequência de Bases , Flores/genética , Mutação , Fenótipo , Folhas de Planta/genética , RNA de Plantas/genética , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA