RESUMO
Age-related macular degeneration (AMD), a leading cause of vision loss, primarily arises from the degeneration of retinal pigment epithelium (RPE) and photoreceptors. Current therapeutic options for dry AMD are limited. Encouragingly, cultured RPE cells on parylene-based biomimetic Bruch's membrane demonstrate characteristics akin to the native RPE layer. In this study, we cultivated human embryonic stem cell-derived polarized RPE (hESC-PRPE) cells on parylene membranes at both small- and large-scale settings, collecting conditioned supernatant, denoted as PRPE-SF. We conducted a comprehensive analysis of the morphology of the cultured hESC-RPE cells and the secreted growth factors in PRPE-SF. To evaluate the in vivo efficacy of these products, the product was administered via intravitreal injections of PRPE-SF in immunodeficient Royal College of Surgeons (iRCS) rats, a model for retinal degeneration. Our study not only demonstrated the scalability of PRPE-SF production while maintaining RPE cell phenotype but also showed consistent protein concentrations between small- and large-scale batches. We consistently identified 10 key factors in PRPE-SF, including BMP-7, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-6, MANF, PEDF, PDGF-AA, TGFß1, and VEGF. Following intravitreal administration of PRPE-SF, we observed a significant increase in the thickness of the outer nuclear layer (ONL) and photoreceptor preservation in iRCS rats. Furthermore, correlation analysis revealed that IGFBP-3, IGFBP-4, MANF, PEDF, and TGFß1 displayed positive associations with in vivo bioactivity, while GDF-15 exhibited a negative correlation. Overall, this study highlights the feasibility of scaling up PRPE-SF production on parylene membranes without compromising its essential constituents. The outcomes of PRPE-SF administration in an animal model of retinal degeneration present substantial potential for photoreceptor preservation. Moreover, the identification of candidate surrogate potency markers, showing strong positive associations with in vivo bioactivity, lays a solid foundation for the development of a promising therapeutic intervention for retinal degenerative diseases.
Assuntos
Polímeros , Degeneração Retiniana , Epitélio Pigmentado da Retina , Xilenos , Humanos , Animais , Ratos , Epitélio Pigmentado da Retina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina , Degeneração Retiniana/metabolismoRESUMO
Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.
Assuntos
Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Cirurgiões , Humanos , Adulto , Animais , Ratos , RetinaRESUMO
Retinitis pigmentosa (RP) is a retinal degenerative disease associated with a diversity of genetic mutations. In a natural progression study (NPS) evaluating the molecular changes in Royal College of Surgeons (RCS) rats using lipidomic profiling, RNA sequencing, and gene expression analyses, changes associated with retinal degeneration from p21 to p60 were evaluated, where reductions in retinal ALOX15 expression corresponded with disease progression. This important enzyme catalyzes the formation of specialized pro-resolving mediators (SPMs) such as lipoxins (LXs), resolvins (RvDs), and docosapentaenoic acid resolvins (DPA RvDs), where reduced ALOX15 corresponded with reduced SPMs. Retinal DPA RvD2 levels were found to correlate with retinal structural and functional decline. Retinal RNA sequencing comparing p21 with p60 showed an upregulation of microglial inflammatory pathways accompanied by impaired damage-associated molecular pattern (DAMP) clearance pathways. This analysis suggests that ALXR/FPR2 activation can ameliorate disease progression, which was supported by treatment with an LXA4 analog, NAP1051, which was able to promote the upregulation of ALOX12 and ALOX15. This study showed that retinal inflammation from activated microglia and dysregulation of lipid metabolism were central to the pathogenesis of retinal degeneration in RP, where ALXR/FPR2 activation was able to preserve retinal structure and function.
Assuntos
Araquidonato 15-Lipoxigenase , Degeneração Retiniana , Retinose Pigmentar , Animais , Humanos , Ratos , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Retina/metabolismo , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismoRESUMO
OBJECTIVE: Transcorneal electrical stimulation (TES) is a promising approach to delay retinal degeneration by inducing extracellular electric field-driven neuroprotective effects within photoreceptors. Although achieving precise electric field control is feasible in vitro, characterizing these fields becomes intricate and largely unexplored in vivo due to uneven distribution in the heterogeneous body. In this paper, we investigate and characterize electric fields within the retina during TES to assess the potential for therapeutic approaches Methods: We developed a computational model of a rat's head, enabling us to generate predictive simulations of the voltage and current density induced in the retina. Subsequently, an in vivo experimental setup involving Royal College of Surgeon (RCS) rats was implemented to measure the voltage across the retina using identical electrode configurations as employed in the simulations. RESULTS: A stimulation amplitude of 0.2-0.3 mA may be necessary during TES in rats to induce a current density of at least 20 A/[Formula: see text] in the retina, which is the lower limit for triggering neuroprotective effects according to culture studies on neural cells. Measurement taken from cadaveric pigs' eyes revealed that a stimulation amplitude of 1 mA is necessary for achieving the same current density. CONCLUSION: The computational modeling approach presented in this study was validated with experimental data and can be leveraged for predictive simulations to optimize the electrode design and stimulation parameters of TES. SIGNIFICANCE: Once validated, the flexibility and low research cost of computational models are valuable in optimization studies where testing on live subjects is not feasible.
Assuntos
Terapia por Estimulação Elétrica , Retina , Degeneração Retiniana , Animais , Ratos , Degeneração Retiniana/terapia , Degeneração Retiniana/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Retina/fisiologia , Retina/efeitos da radiação , Retina/fisiopatologia , Suínos , Neuroproteção/fisiologia , Simulação por Computador , Córnea/fisiologia , Estimulação Elétrica/métodosRESUMO
Purpose: Isolating extracellular vesicles (EVs) with high yield, replicable purity, and characterization remains a bottleneck in the development of EV therapeutics. To address these challenges, the current study aims to establish the necessary framework for preclinical and clinical studies in the development of stem cell-derived intraocular EV therapeutics. Methods: Small EVs (sEVs) were separated from the conditioned cell culture medium (CCM) of the human embryogenic stem cell-derived fully polarized retinal pigment epithelium (hESC-RPE-sEV) by a commercially available microfluidic tangential flow filtration (TFF) device ExoDisc (ED) or differential ultracentrifugation (dUC). The scaling and concentration capabilities and purity of recovered sEVs were assessed. Size, number, and surface markers of sEVs were determined by orthogonal approaches using multiple devices. Results: ED yielded higher numbers of sEVs, ranging from three to eight times higher depending on the measurement device, compared to dUC using the same 5 mL of CCM input. Within the same setting, the purity of ED-recovered hESC-RPE-sEVs was higher than that for dUC-recovered sEVs. ED yielded a higher concentration of particles, which is strongly correlated with the input volume, up to 10 mL (r = 0.98, P = 0.016). Meanwhile, comprehensive characterization profiles of EV surface markers between ED- and dUC-recovered hESC-RPE-sEVs were compatible. Conclusions: Our study supports TFF as a valuable strategy for separating sEVs for the development of intraocular EV therapeutics. However, there is a growing need for diverse devices to optimize TFF for use in EV preparation. Using orthogonal approaches in EV characterization remains ideal for reliably characterizing heterogeneous EV.
Assuntos
Vesículas Extracelulares , Células-Tronco Embrionárias Humanas , Humanos , Meios de Cultivo Condicionados , Filtração , Epitélio Pigmentado da RetinaRESUMO
Retinal pigment epithelial (RPE) cells are exclusive to the retina, critically multifunctional in maintaining the visual functions and health of photoreceptors and the retina. Despite their vital functions throughout lifetime, RPE cells lack regenerative capacity, rendering them vulnerable which can lead to degenerative retinal diseases. With advancements in stem cell technology enabling the differentiation of functional cells from pluripotent stem cells and leveraging the robust autocrine and paracrine functions of RPE cells, extracellular vesicles (EVs) secreted by RPE cells hold significant therapeutic potential in supplementing RPE cell activity. While previous research has primarily focused on the trophic factors secreted by RPE cells, there is a lack of studies investigating miRNA, which serves as a master regulator of gene expression. Profiling and defining the functional role of miRNA contained within RPE-secreted EVs is critical as it constitutes a necessary step in identifying the optimal phenotype of the EV-secreting cell and understanding the biological cargo of EVs to develop EV-based therapeutics. In this study, we present a comprehensive profile of miRNA in small extracellular vesicles (sEVs) secreted during RPE maturation following differentiation from human embryonic stem cells (hESCs); early-stage hESC-RPE (20-21 days in culture), mid-stage hESC-RPE (30-31 days in culture) and late-stage hESC-RPE (60-61 days in culture). This exploration is essential for ongoing efforts to develop and optimize EV-based intraocular therapeutics utilizing RPE-secreted EVs, which may significantly impact the function of dysfunctional RPE cells in retinal diseases.
RESUMO
Dysfunction of the retinal pigment epithelium (RPE) is a common shared pathology in major degenerative retinal diseases despite variations in the primary etiologies of each disease. Due to their demanding and indispensable functional roles throughout the lifetime, RPE cells are vulnerable to genetic predisposition, external stress, and aging processes. Building upon recent advancements in stem cell technology for differentiating healthy RPE cells and recognizing the significant roles of small extracellular vesicles (sEV) in cellular paracrine and autocrine actions, we investigated the hypothesis that the RPE-secreted sEV alone can restore essential RPE functions and rescue photoreceptors in RPE dysfunction-driven retinal degeneration. Our findings support the rationale for developing intravitreal treatment of sEV. We demonstrate that intravitreally delivered sEV effectively penetrate the full thickness of the retina. Xenogenic intraocular administration of human-derived EVs did not induce acute immune reactions in rodents. sEV derived from human embryonic stem cell (hESC)-derived fully differentiated RPE cells, but not sEV-depleted conditioned cell culture media (CCM minus sEV), rescued photoreceptors and their function in a Royal College of Surgeons (RCS) rat model. This model is characterized by photoreceptor death and retinal degeneration resulting from a mutation in the MerTK gene in RPE cells. From the bulk RNA sequencing study, we identified 447 differently expressed genes in the retina after hESC-RPE-sEV treatment compared with the untreated control. Furthermore, 394 out of 447 genes (88%) showed a reversal in expression toward the healthy state in Long-Evans (LE) rats after treatment compared to the diseased state. Particularly, detrimental alterations in gene expression in RCS rats, including essential RPE functions such as phototransduction, vitamin A metabolism, and lipid metabolism were partially reversed. Defective photoreceptor outer segment engulfment due to intrinsic MerTK mutation was partially ameliorated. These findings suggest that RPE-secreted sEV may play a functional role similar to that of RPE cells. Our study justifies further exploration to fully unlock future therapeutic interventions with sEV in a broad array of degenerative retinal diseases.
RESUMO
Purpose: The laser-induced choroidal neovascularization (CNV) mouse model is the most frequently used animal model of CNV. To test new therapeutic agents that suppress CNV, CNV measurement in an accurate, precise, and efficient manner is important. We present the utility of Fiji-assisted automatic volumetric quantification of CNV in comparison with two-dimensional CNV analyses. Methods: Laser-induced CNV was induced in C57BL/6J mice according to the established protocol. After CNV induction, mice were treated with intravitreal injection of either phosphate-buffered saline solution (PBS) or Aflibercept, an anti- vascular endothelial growth factor agent. One week after intravitreal injection treatment, retina pigment epithelium/choroid flat mounts were stained with rhodamine-conjugated Griffonia simplicifolia lectin B4. Z-stacks of the entire CNV lesion obtained using laser confocal microscopy were converted to binary stacks using Fiji for volumetric analysis. Data from volumetric analysis and multiple area analyses from z-stack projection, the maximum, blindly selected, and mean area were compared using Fiji. Results: Fiji-assisted automatic quantitative volumetric analysis of CNV was useful in detecting experimental outliers in laser-induced CNV genesis and provided accurate and precise measurements of total areas of CNV with a lower coefficient of variance (63%) than in multiple area analyses, including the z-stack projection, maximum, blindly selected, and mean areas (67%, 67%, 76%, and 69%, respectively). A lower coefficient of variance in volumetric analysis than in multiple area analyses resulted in increased statistical significance when comparing CNV lesions in PBS, and Aflibercept-treated groups; P = 0.004 in volumetric analysis versus P value range between 0.03 and 0.05 in multiple area analyses. Conclusions: Fiji-assisted automatic quantitative volumetric analysis can be useful for accurate, precise, and efficient measurements of total areas of CNV. Translational Relevance: Volumetric measurement for CNV lesions can be advantageous in verifying the efficacy of therapeutic agents in the laser-induced CNV mouse model.
Assuntos
Neovascularização de Coroide , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Fiji , Angiofluoresceinografia/métodos , Camundongos Endogâmicos C57BL , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/etiologia , Modelos Animais de Doenças , LasersRESUMO
Retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are characterized by unrelenting neuronal death. However, electrical stimulation has been shown to induce neuroprotective changes in the retina capable of slowing down the progression of retinal blindness. In this work, a multi-scale computational model and modeling platform were used to design electrical stimulation strategies to better target the bipolar cells (BCs), that along with photoreceptors are affected at the early stage of retinal degenerative diseases. Our computational findings revealed that biphasic stimulus pulses of long pulse duration could decrease the activation threshold of BCs, and the differential stimulus threshold between ganglion cells (RGCs) and BCs, offering the potential of targeting the BCs during the early phase of degeneration. In vivo experiments were performed to evaluate the electrode placement and parameters found to target bipolar cells and evaluate the safety and efficacy of the treatment. Results indicate that the proposed transcorneal Electrical Stimulation (TES) strategy can attenuate retinal degeneration in a Royal College of Surgeon (RCS) rodent model, offering the potential to translate this work to clinical practice.
Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Animais , Degeneração Retiniana/terapia , Retina , Modelos Animais , Estimulação ElétricaRESUMO
Retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa, lack effective therapies. Conventional monotherapeutic approaches fail to target the multiple affected pathways in retinal degeneration. However, the retinal pigment epithelium (RPE) secretes several neurotrophic factors addressing diverse cellular pathways, potentially preserving photoreceptors. This study explored human embryonic stem cell-derived, polarized RPE soluble factors (PRPE-SF) as a combination treatment for retinal degeneration. PRPE-SF promoted retinal progenitor cell survival, reduced oxidative stress in ARPE-19 cells, and demonstrated critical antioxidant and anti-inflammatory effects for preventing retinal degeneration in the Royal College of Surgeons (RCS) rat model. Importantly, PRPE-SF treatment preserved retinal structure and scotopic b-wave amplitudes, suggesting therapeutic potential for delaying retinal degeneration. PRPE-SF is uniquely produced using biomimetic membranes for RPE polarization and maturation, promoting a protective RPE secretome phenotype. Additionally, PRPE-SF is produced without animal serum to avoid immunogenicity in future clinical development. Lastly, PRPE-SF is a combination of neurotrophic factors, potentially ameliorating multiple dysfunctions in retinal degenerations. In conclusion, PRPE-SF offers a promising therapeutic candidate for retinal degenerative diseases, advancing the development of effective therapeutic strategies for these debilitating conditions.
Assuntos
Degeneração Retiniana , Epitélio Pigmentado da Retina , Ratos , Humanos , Animais , Epitélio Pigmentado da Retina/metabolismo , Degeneração Retiniana/metabolismo , Secretoma , Retina/metabolismo , Células Fotorreceptoras/metabolismoRESUMO
Purpose: To characterize vitreous humor (VH) exosomes and to explore their role in the development of proliferative vitreoretinopathy (PVR) using mass spectrometry-based proteome profiling. Methods: Exosomes were isolated from undiluted VH from patients with retinal detachment (RD) with various stages of PVR (n = 9), macular hole (MH; n = 5), or epiretinal membrane (ERM; n = 5) using differential ultracentrifugation. The exosomal size, morphology, and exosome markers were analyzed using a nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and an exosome detection antibody array. The tryptic fragment sequencing of exosome-contained proteins was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a Thermo Lumos Fusion Tribrid Orbitrap mass spectrometer. The pathway analysis of the MS data was performed. Results: The number of exosome particles were significantly increased only in the RD with severe PVR group compared with the control groups and the RD without PVR or with mild PVR groups. Of 724 exosome proteins identified, 382 were differentially expressed (DE) and 176 were uniquely present in PVR. Both DE proteins and exosome proteins that were only present in PVR were enriched in proteins associated with previously known key pathways related to PVR development, including reactive retinal gliosis, pathologic cellular proliferation, inflammation, growth of connective tissues, and epithelial mesenchymal transition (EMT). The SPP1, CLU, VCAN, COL2A1, and SEMA7A that are significantly upregulated in PVR were related to the tissue remodeling. Conclusions: Exosomes may play a key role in mediating tissue remodeling along with a complex set of pathways involved in PVR development.
RESUMO
PURPOSE: To assess the transretinal penetration of intravitreally injected retinal multicell-derived exosomes and to develop exosome-based active targeting of choroidal neovascularization (CNV) by bioengineering with ASL, which is composed of a membrane Anchor (BODIPY), Spacer (PEG), and targeting Ligands (cyclic RGD peptide). METHODS: Retinal multicell-derived exosomes were recovered from a whole mouse retina using differential ultracentrifugation. Their size, number, and morphology were characterized using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Exosome markers were confirmed using an exosome detection antibody array. Intravitreal injection of fluorescent (PKH-26)-labeled or engineered ASL exosomes (1 × 106 exosomes/µL) were given to the wild-type mouse or laser-induced CNV mouse model. Retinal uptake of exosomes was assessed by in vivo retinal imaging microscopy and histological staining with DAPI, GSA, and anti-integrin αv for retinal sections or choroid/RPE flat mounts. Active targeting of CNV was assessed by comparing retinal uptake between areas with and without CNV and by colocalization analysis of ASL exosomes with integrin αv within CNV. Staining with anti-F4/80, anti-ICAM-1, and anti-GFAP antibodies on retinal sections were performed to identify intracellular uptake of exosomes and immediate reactive retinal gliosis after exosome treatment. RESULTS: An average of 2.1 × 109 particles/mL with a peak size of 140 nm exosomes were recovered. Rapid retinal penetration of intravitreally injected exosomes was confirmed by retinal imaging microscopy at 3 and 24 h post-injection. Intravitreally delivered PKH-26-labeled exosomes reached inner and outer retinal layers including IPL, INL, OPL, and ONL at 1 and 7 days post-injection. Intravitreally injected ASL exosomes were predominantly delivered to the area of CNV including ONL, RPE, and choroid in laser-induced CNV mouse models with 89.5% of colocalization with integrin αv. Part of exosomes was also taken intracellularly to vascular endothelial cells and macrophages. After intravitreal injection, neither naive exosomes nor ASL exosomes induced immediate reactive gliosis. CONCLUSIONS: Intravitreally delivered retinal multicell-derived exosomes have good retinal penetration, and ASL modification of exosomes actively targets CNV with no immediate reactive gliosis. ASL exosomes have a great potential to serve as an intraocular drug delivery vehicle, allowing an active targeting strategy.
Assuntos
Neovascularização de Coroide , Exossomos , Animais , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Exossomos/patologia , Gliose , Camundongos , OligopeptídeosRESUMO
Purpose: To show the utility of genetic testing in inherited retinal disease (IRD) patients. Methods: This retrospective cohort study was performed at a single academic center and comprised 59 patients clinically diagnosed with IRD who had testing via the Invitae IRD Panel (Invitae Corp). Samples were collected from August 2019 to April 2021. The rates of genetic diagnosis and disease-category specific results (ie, positive, undetermined, negative) were assessed. Results: Testing results were returned a mean of 20 days (range, 14-28 days) after submission. Of the samples, 50.8% (30/59) had a diagnostic yield. By disease category, the yield was 46.4% (13/28) nonsyndromic retinitis pigmentosa (RP), 50.0% (4/8) syndromic RP, 46.2% (6/13) macular dystrophies, 75.0% (3/4) cone or cone-rod dystrophies, and 80.0% (4/5) other retinopathies; there were no cases of rod dystrophies. The results were undetermined in 47.5% of patients (28/59) because of identification of only 1 recessive mutation (5.1%; 3/59), 1 recessive mutation and at least 1 variant of uncertain significance (VUS) (13.6%; 8/59), or VUS only (28.8%; 17/59). One patient (1.7%) received negative testing results with no mutations or VUS identified. Conclusions: Open-access, no-charge panel testing offers a reasonable diagnostic yield. Accurate clinical diagnosis of IRD before testing and acknowledgment of the limitations of panel testing are critical. The results add to the current estimates of the value of genetic testing for retina specialists in the management of IRD.