Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7947): 262-269, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755171

RESUMO

Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals1. Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive2. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques3-5. Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C-C coupling. Quantitative structure-activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions.

2.
J Am Chem Soc ; 146(4): 2593-2603, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235653

RESUMO

Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal-organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co-N-C), consisting of Co-N4 and Zn-N4 local structures. These catalysts exhibited superior ORR activity with a half-wave potential (E1/2) of 0.938 V versus RHE (reversible hydrogen electrode) and robust stability (ΔE1/2 = -8.5 mV) after 50k electrochemical cycles. Moreover, this remarkable performance was validated under realistic fuel cell working conditions, achieving a record-high peak power density of ∼1 W cm-2 among the reported SACs for alkaline fuel cells. Operando X-ray absorption spectroscopy was conducted to identify the active sites and reveal catalytic mechanistic insights. The results indicated that the Co atom in the Co-N4 structure was the main catalytically active center, where one axial oxygenated species binds to form an Oads-Co-N4 moiety during the ORR. In addition, theoretical studies, based on a potential-dependent microkinetic model and core-level shift calculations, showed good agreement with the experimental results and provided insights into the bonding of oxygen species on Co-N4 centers during the ORR. This work provides a comprehensive mechanistic understanding of the active sites in the Zn/Co-N-C catalysts and will pave the way for the future design and advancement of high-performance single-site electrocatalysts for fuel cells and other energy applications.

3.
J Synchrotron Radiat ; 31(Pt 2): 322-327, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306299

RESUMO

X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.

4.
J Am Chem Soc ; 145(37): 20208-20213, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37677089

RESUMO

Advances in electrocatalysis research rely heavily on building a thorough mechanistic understanding of catalyst active sites under realistic operating conditions. Only recently have techniques emerged that enable sensitive spectroscopic data collection to distinguish catalytically relevant surface sites from the underlying bulk material under applied potential in the presence of an electrolyte layer. Here, we demonstrate that operando high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) is a powerful spectroscopic method which offers critical surface chemistry insights in CO2 electroreduction with sub-electronvolt energy resolution using hard X-rays. Combined with the high surface area-to-volume ratio of 5 nm copper nanoparticles, operando HERFD-XAS allows us to observe with clear evidence the breaking of chemical bonds between the ligands and the Cu surface as part of the ligand desorption process occurring under electrochemical potentials relevant for the CO2 reduction reaction (CO2RR). In addition, the dynamic evolution of oxidation state and coordination number throughout the operation of the nanocatalyst was continuously tracked. With these results in hand, undercoordinated metallic copper nanograins are proposed to be the real active sites in the CO2RR. This work emphasizes the importance of HERFD-XAS compared to routine XAS in catalyst characterization and mechanism exploration, especially in the complicated electrochemical CO2RR.

5.
Inorg Chem ; 62(34): 13681-13691, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37578150

RESUMO

Valence-to-core X-ray emission spectroscopy (VtC XES) is an emerging technique that uses hard X-rays to probe the valence electronic structure of an absorbing atom. Despite finding varied applications for light elements and first row transition metals, little work has been done on heavier elements such as second and third row transition metals. This lack of application is at least partially due to the relatively low resolution of the data at the high energies required to measure these elements, which obscures the useful chemical information that can be extracted from the lower energy, higher resolution spectra of lighter elements. Herein, we collect data on a set of platinum-containing compounds and demonstrate that the VtC XES resolution can be dramatically enhanced by exciting the platinum atom in resonance with its L3-edge white line absorption. Whereas spectra excited using standard nonresonant absorption well above the Pt L3-edge display broad, unfeatured VtC regions, resonant XES (RXES) spectra have more than twofold improved resolution and are revealed to be rich in chemical information with the ability to distinguish between even closely related species. We further demonstrate that these RXES spectra may be used to selectively probe individual components of a mixture of Pt-containing compounds, establishing this technique as a viable probe for chemically complex samples. Lastly, it is shown that the spectra are interpretable using a molecular orbital framework and may be calculated using density functional theory, thus suggesting resonant excitation as a general strategy for extracting chemically useful information from heavy element VtC spectra.

6.
Phys Chem Chem Phys ; 23(43): 24780-24788, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714314

RESUMO

Platinum is used extensively as a catalyst for a wide variety of chemical reactions, though its scarcity and price present limitations to expansions of its use. To understand the origin of platinum's versatility-with the goals of both improving the efficiency of existing catalysts and mimicking its reactivity with more abundant metals-the mechanisms of platinum-catalyzed chemical reactions must be understood via structural and spectroscopic characterization of these catalysts under operando conditions. Such data, typically consisting of complex mixtures of species, often prove challenging to interpret, inviting the aid of chemical theory. DFT calculations in particular have proven successful at predicting structural and spectroscopic parameters of transition metal species, though a thorough investigation of how these methods perform for platinum-based complexes has yet to be undertaken. Herein, we evaluated the performance of geometry optimization for five commonly used functionals (BP86, PBE, B3LYP, PBE0, and TPSSh) in combination with various ligand basis sets, relativistic approximations, and solvation and dispersion models. We applied these DFT methods to a training set of 14 platinum-containing complexes with varying sizes, oxidation states, and number and type of ligands and determined that the best-performing method was the PBE0 functional together with the def2-TZVP basis set for the ligand atoms, the ZORA relativistic approximation, and solvation and dispersion corrections. The ability of this DFT methodology to accurately predict metrical parameters was confirmed using two case studies, most notably by comparing the DFT optimized geometry of a previously uncharacterized complex to newly collected EXAFS data, which showed excellent agreement.

7.
Nat Methods ; 14(4): 443-449, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250468

RESUMO

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.


Assuntos
Cristalografia por Raios X/métodos , Lasers , Acústica , Complexo de Proteína do Fotossistema II/química , Fitocromo/química , Ribonucleotídeo Redutases/química , Espectrometria por Raios X/métodos
8.
J Am Chem Soc ; 141(38): 15153-15165, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31475820

RESUMO

Iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases generate iron(IV)-oxo (ferryl) intermediates that can abstract hydrogen from aliphatic carbons (R-H). Hydroxylation proceeds by coupling of the resultant substrate radical (R•) and oxygen of the Fe(III)-OH complex ("oxygen rebound"). Nonhydroxylation outcomes result from different fates of the Fe(III)-OH/R• state; for example, halogenation results from R• coupling to a halogen ligand cis to the hydroxide. We previously suggested that halogenases control substrate-cofactor disposition to disfavor oxygen rebound and permit halogen coupling to prevail. Here, we explored the general implication that, when a ferryl intermediate can ambiguously target two substrate carbons for different outcomes, rebound to the site capable of the alternative outcome should be slower than to the adjacent, solely hydroxylated site. We evaluated this prediction for (i) the halogenase SyrB2, which exclusively hydroxylates C5 of norvaline appended to its carrier protein but can either chlorinate or hydroxylate C4 and (ii) two bifunctional enzymes that normally hydroxylate one carbon before coupling that oxygen to a second carbon (producing an oxacycle) but can, upon encountering deuterium at the first site, hydroxylate the second site instead. In all three cases, substrate hydroxylation incorporates a greater fraction of solvent-derived oxygen at the site that can also undergo the alternative outcome than at the other site, most likely reflecting an increased exchange of the initially O2-derived oxygen ligand in the longer-lived Fe(III)-OH/R• states. Suppression of rebound may thus be generally important for nonhydroxylation outcomes by these enzymes.


Assuntos
Compostos Ferrosos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Compostos Ferrosos/química , Ácidos Cetoglutáricos/química , Estrutura Molecular , Oxigênio/química , Oxigenases/química , Estereoisomerismo
9.
Biochemistry ; 57(18): 2679-2693, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29609464

RESUMO

A ribonucleotide reductase (RNR) from Flavobacterium johnsoniae ( Fj) differs fundamentally from known (subclass a-c) class I RNRs, warranting its assignment to a new subclass, Id. Its ß subunit shares with Ib counterparts the requirements for manganese(II) and superoxide (O2-) for activation, but it does not require the O2--supplying flavoprotein (NrdI) needed in Ib systems, instead scavenging the oxidant from solution. Although Fj ß has tyrosine at the appropriate sequence position (Tyr 104), this residue is not oxidized to a radical upon activation, as occurs in the Ia/b proteins. Rather, Fj ß directly deploys an oxidized dimanganese cofactor for radical initiation. In treatment with one-electron reductants, the cofactor can undergo cooperative three-electron reduction to the II/II state, in contrast to the quantitative univalent reduction to inactive "met" (III/III) forms seen with I(a-c) ßs. This tendency makes Fj ß unusually robust, as the II/II form can readily be reactivated. The structure of the protein rationalizes its distinctive traits. A distortion in a core helix of the ferritin-like architecture renders the active site unusually open, introduces a cavity near the cofactor, and positions a subclass-d-specific Lys residue to shepherd O2- to the Mn2II/II cluster. Relative to the positions of the radical tyrosines in the Ia/b proteins, the unreactive Tyr 104 of Fj ß is held away from the cofactor by a hydrogen bond with a subclass-d-specific Thr residue. Structural comparisons, considered with its uniquely simple mode of activation, suggest that the Id protein might most closely resemble the primordial RNR-ß.


Assuntos
Flavoproteínas/química , Manganês/química , Ribonucleotídeo Redutases/química , Superóxidos/química , Catálise , Domínio Catalítico , Flavobacterium/química , Flavobacterium/enzimologia , Flavoproteínas/metabolismo , Ferro/química , Oxirredução , Oxigênio/química , Ribonucleotídeo Redutases/classificação , Ribonucleotídeo Redutases/metabolismo , Tirosina/química
10.
Angew Chem Int Ed Engl ; 57(39): 12754-12758, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30075052

RESUMO

Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two-color valence-to-core X-ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2 -activating, radical-initiating manganese-iron heterodinuclear cofactor in a class I-c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two-color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIV FeIV and MnIV FeIII states of the enzyme to be assigned as MnIV (µ-O)2 FeIV and MnIV (µ-O)(µ-OH)FeIII , respectively.


Assuntos
Proteínas de Bactérias/metabolismo , Ribonucleotídeo Redutases/metabolismo , Espectrometria por Raios X , Proteínas de Bactérias/química , Chlamydia trachomatis/enzimologia , Teoria da Densidade Funcional , Compostos Férricos/química , Íons/química , Ferro/química , Manganês/química , Prótons , Ribonucleotídeo Redutases/química
11.
J Am Chem Soc ; 139(5): 1950-1957, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28075562

RESUMO

High-valent iron and manganese complexes effect some of the most challenging biochemical reactions known, including hydrocarbon and water oxidations associated with the global carbon cycle and oxygenic photosynthesis, respectively. Their extreme reactivity presents an impediment to structural characterization, but their biological importance and potential chemical utility have, nevertheless, motivated extensive efforts toward that end. Several such intermediates accumulate during activation of class I ribonucleotide reductase (RNR) ß subunits, which self-assemble dimetal cofactors with stable one-electron oxidants that serve to initiate the enzyme's free-radical mechanism. In the class I-c ß subunit from Chlamydia trachomatis, a heterodinuclear Mn(II)/Fe(II) complex reacts with dioxygen to form a Mn(IV)/Fe(IV) intermediate, which undergoes reduction of the iron site to produce the active Mn(IV)/Fe(III) cofactor. Herein, we assess the structure of the Mn(IV)/Fe(IV) activation intermediate using Fe- and Mn-edge extended X-ray absorption fine structure (EXAFS) analysis and multifrequency pulse electron paramagnetic resonance (EPR) spectroscopy. The EXAFS results reveal a metal-metal vector of 2.74-2.75 Å and an intense light-atom (C/N/O) scattering interaction 1.8 Å from the Fe. Pulse EPR data reveal an exchangeable deuterium hyperfine coupling of strength |T| = 0.7 MHz, but no stronger couplings. The results suggest that the intermediate possesses a di-µ-oxo diamond core structure with a terminal hydroxide ligand to the Mn(IV).


Assuntos
Chlamydia trachomatis/enzimologia , Compostos de Ferro/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Ribonucleotídeo Redutases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Ferro/química , Manganês/química , Estrutura Molecular , Oxigênio/química , Ribonucleotídeo Redutases/química , Espectroscopia por Absorção de Raios X
12.
J Am Chem Soc ; 139(39): 13830-13836, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28823155

RESUMO

Iron(II)- and 2-(oxo)-glutarate-dependent oxygenases catalyze diverse oxidative transformations that are often initiated by abstraction of hydrogen from carbon by iron(IV)-oxo (ferryl) complexes. Control of the relative orientation of the substrate C-H and ferryl Fe-O bonds, primarily by direction of the oxo group into one of two cis-related coordination sites (termed inline and offline), may be generally important for control of the reaction outcome. Neither the ferryl complexes nor their fleeting precursors have been crystallographically characterized, hindering direct experimental validation of the offline hypothesis and elucidation of the means by which the protein might dictate an alternative oxo position. Comparison of high-resolution X-ray crystal structures of the substrate complex, an Fe(II)-peroxysuccinate ferryl precursor, and a vanadium(IV)-oxo mimic of the ferryl intermediate in the l-arginine 3-hydroxylase, VioC, reveals coordinated motions of active site residues that appear to control the intermediate geometries to determine reaction outcome.


Assuntos
Compostos Ferrosos/metabolismo , Glutaratos/metabolismo , Oxigenases de Função Mista/metabolismo , Biocatálise , Cristalografia por Raios X , Compostos Ferrosos/química , Glutaratos/química , Oxigenases de Função Mista/química , Modelos Moleculares
13.
Inorg Chem ; 56(21): 13382-13389, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28960972

RESUMO

The iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases catalyze an array of challenging transformations via a common iron(IV)-oxo (ferryl) intermediate, which in most cases abstracts hydrogen (H•) from an aliphatic carbon of the substrate. Although it has been shown that the relative disposition of the Fe-O and C-H bonds can control the rate of H• abstraction and fate of the resultant substrate radical, there remains a paucity of structural information on the actual ferryl states, owing to their high reactivity. We demonstrate here that the stable vanadyl ion [(VIV-oxo)2+] binds along with 2OG or its decarboxylation product, succinate, in the active site of two different Fe/2OG enzymes to faithfully mimic their transient ferryl states. Both ferryl and vanadyl complexes of the Fe/2OG halogenase, SyrB2, remain stably bound to its carrier protein substrate (l-aminoacyl-S-SyrB1), whereas the corresponding complexes harboring transition metals (Fe, Mn) in lower oxidation states dissociate. In the well-studied taurine:2OG dioxygenase (TauD), the disposition of the substrate C-H bond relative to the vanadyl ion defined by pulse electron paramagnetic resonance methods is consistent with the crystal structure of the reactant complex and computational models of the ferryl state. Vanadyl substitution may thus afford access to structural details of the key ferryl intermediates in this important enzyme class.


Assuntos
Ferro/química , Ferroproteínas não Heme/química , Oxirredutases/química , Vanadatos/química , Proteínas de Transporte/química , Domínio Catalítico , Oxigenases de Função Mista/química , Oxirredução , Ácido Succínico/química , Taurina/química
14.
J Am Chem Soc ; 138(39): 12791-12802, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27656776

RESUMO

The synthesis and reactivity of a series of mononuclear nonheme iron complexes that carry out intramolecular aromatic C-F hydroxylation reactions is reported. The key intermediate prior to C-F hydroxylation, [FeIV(O)(N4Py2Ar1)](BF4)2 (1-O, Ar1 = -2,6-difluorophenyl), was characterized by single-crystal X-ray diffraction. The crystal structure revealed a nonbonding C-H···O═Fe interaction with a CH3CN molecule. Variable-field Mössbauer spectroscopy of 1-O indicates an intermediate-spin (S = 1) ground state. The Mössbauer parameters for 1-O include an unusually small quadrupole splitting for a triplet FeIV(O) and are reproduced well by density functional theory calculations. With the aim of investigating the initial step for C-F hydroxylation, two new ligands were synthesized, N4Py2Ar2 (L2, Ar2 = -2,6-difluoro-4-methoxyphenyl) and N4Py2Ar3 (L3, Ar3 = -2,6-difluoro-3-methoxyphenyl), with -OMe substituents in the meta or ortho/para positions with respect to the C-F bonds. FeII complexes [Fe(N4Py2Ar2)(CH3CN)](ClO4)2 (2) and [Fe(N4Py2Ar3)(CH3CN)](ClO4)2 (3) reacted with isopropyl 2-iodoxybenzoate to give the C-F hydroxylated FeIII-OAr products. The FeIV(O) intermediates 2-O and 3-O were trapped at low temperature and characterized. Complex 2-O displayed a C-F hydroxylation rate similar to that of 1-O. In contrast, the kinetics (via stopped-flow UV-vis) for complex 3-O displayed a significant rate enhancement for C-F hydroxylation. Eyring analysis revealed the activation barriers for the C-F hydroxylation reaction for the three complexes, consistent with the observed difference in reactivity. A terminal FeII(OH) complex (4) was prepared independently to investigate the possibility of a nucleophilic aromatic substitution pathway, but the stability of 4 rules out this mechanism. Taken together the data fully support an electrophilic C-F hydroxylation mechanism.

15.
Acc Chem Res ; 48(11): 2967-75, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26401686

RESUMO

A long-standing goal of inorganic chemists is the ability to decipher the geometric and electronic structures of chemical species. This is particularly true for the study of small molecule and biological catalysts, where this knowledge is critical for understanding how these molecules effect chemical transformations. Numerous techniques are available for this task, and collectively they have enabled detailed understanding of many complex chemical systems. Despite this battery of probes, however, challenges still remain, particularly when the structural question involves subtle perturbations of the ligands bound to a metal center, as is often the case during chemical reactions. It is here that, as an emerging probe of chemical structure, valence-to-core (VtC) X-ray emission spectroscopy (XES) holds promise. VtC XES begins with ionization of a 1s electron from a metal ion by high energy X-ray photons. Electrons residing in ligand-localized valence orbitals decay to fill the 1s hole, emitting fluorescent photons in the process; in this manner, VtC XES primarily probes the filled, ligand-based orbitals of a metal complex. This is in contrast to other X-ray based techniques, such as K-edge X-ray absorption and EXAFS, which probe the unoccupied d-manifold orbitals and atomic scatterers surrounding the metal, respectively. As a hard X-ray technique, VtC XES experiments can be performed on a variety of sample states and environments, enabling application to demanding systems, such as high pressure cells and dilute biological samples. VtC XES thus can offer unique insights into the geometric and electronic structures of inorganic complexes. In recent years, we have sought to use VtC XES in the study of inorganic and bioinorganic complexes; doing so, however, first required a thorough and detailed understanding of the information content of these spectra. Extensive experimental surveys of model compounds coupled to the insights provided by DFT calculated spectra of real and hypothetical compounds allowed the development of a framework whereby VtC XES spectra may be understood in terms of a molecular orbital picture. Specifically, VtC spectra may be interpreted as a probe of electronic structure for the ligands bound to a metal center, enabling access to chemical information that can be difficult to obtain with other methods. Examples of this include the ability to (1) assess the identity and number of atomic/small molecule ligands bound to a metal center, (2) quantify the degree of bond activation of a small molecule substrate, and (3) establish the protonation state of donor atoms. With this foundation established, VtC has been meaningfully applied to long-standing questions in bioinorganic chemistry, with the potential for numerous future applications in all areas of metal-mediated catalysis.


Assuntos
Complexos de Coordenação/química , Espectrometria por Raios X , Ferro , Manganês , Modelos Químicos
16.
J Biol Inorg Chem ; 21(5-6): 793-805, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27251139

RESUMO

A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry.


Assuntos
Compostos de Vanádio/química , Teoria Quântica , Espectrometria por Raios X , Espectroscopia por Absorção de Raios X
17.
J Am Chem Soc ; 137(26): 8644-53, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26076066

RESUMO

Herein, we describe an uncommon example of a manganese-thiolate complex, which is capable of activating dioxygen and catalyzing its two-electron reduction to generate H2O2. The structurally characterized dimercapto-bridged Mn(II) dimer [Mn(II)2(LS)(LSH)]ClO4 (Mn(II)2SH) is formed by reaction of the LS ligand (2,2'-(2,2'-bipyridine-6,6'-diyl)bis(1,1-diphenylethanethiolate)) with Mn(II). The unusual presence of a pendant thiol group bound to one Mn(II) ion in Mn(II)2SH is evidenced both in the solid state and in solution. The Mn(II)2SH complex reacts with dioxygen in CH3CN, leading to the formation of a rare mono-µ-hydroxo dinuclear Mn(III) complex, [(Mn(III)2(LS)2(OH)]ClO4 (Mn(III)2OH), which has also been structurally characterized. When Mn(II)2SH reacts with O2 in the presence of a proton source, 2,6-lutidinium tetrafluoroborate (up to 50 equiv), the formation of a new Mn species is observed, assigned to a bis-µ-thiolato dinuclear Mn(III) complex with two terminal thiolate groups (Mn(III)2), with the concomitant production of H2O2 up to ∼40% vs Mn(II)2SH. The addition of a catalytic amount of Mn(II)2SH to an air-saturated solution of MenFc (n = 8 or 10) and 2,6-lutidinium tetrafluoroborate results in the quantitative and efficient oxidation of MenFc by O2 to afford the respective ferrocenium derivatives (MenFc(+), with n = 8 or 10). Hydrogen peroxide is mainly produced during the catalytic reduction of dioxygen with 80-84% selectivity, making the Mn(II)2SH complex a rare Mn-based active catalyst for two-electron O2 reduction.

18.
J Am Chem Soc ; 136(26): 9453-63, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24914450

RESUMO

The mainline feature in metal Kß X-ray emission spectroscopy (XES) has long been recognized as an experimental marker for the spin state of the metal center. However, even within a series of metal compounds with the same nominal oxidation and spin state, significant changes are observed that cannot be explained on the basis of overall spin. In this work, the origin of these effects is explored, both experimentally and theoretically, in order to develop the chemical information content of Kß mainline XES. Ligand field expressions are derived that describe the behavior of Kß mainlines for first row transition metals with any d(n) count, allowing for a detailed analysis of the factors governing mainline shape. Further, due to limitations associated with existing computational approaches, we have developed a new methodology for calculating Kß mainlines using restricted active space configuration interaction (RAS-CI) calculations. This approach eliminates the need for empirical parameters and provides a powerful tool for investigating the effects that chemical environment exerts on the mainline spectra. On the basis of a detailed analysis of the intermediate and final states involved in these transitions, we confirm the known sensitivity of Kß mainlines to metal spin state via the 3p-3d exchange coupling. Further, a quantitative relationship between the splitting of the Kß mainline features and the metal-ligand covalency is established. Thus, this study furthers the quantitative electronic structural information that can be extracted from Kß mainline spectroscopy.


Assuntos
Metais/química , Espectrometria por Raios X/métodos , Cloretos/química , Compostos Férricos/química , Fluoretos/química , Ligantes , Metais/análise , Modelos Químicos , Oxirredução , Elementos de Transição/química
19.
J Am Chem Soc ; 136(28): 10076-84, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24946007

RESUMO

X-ray absorption spectroscopy (XAS) can provide detailed insight into the electronic and geometric structures of transition-metal active sites in metalloproteins and chemical catalysts. However, standard XAS spectra inherently represent an average contribution from the entire coordination environment with limited ligand selectivity. To address this limitation, we have investigated the enhancement of XAS features using valence-to-core (VtC)-detected XAS, whereby XAS spectra are measured by monitoring fluorescence from valence-to-core X-ray emission (VtC XES) events. VtC emission corresponds to transitions from filled ligand orbitals to the metal 1s core hole, with distinct energetic shifts for ligands of differing ionization potentials. VtC-detected XAS data were obtained from multiple valence emission features for a series of well-characterized Mn model compounds; taken together, these data correspond to a VtC resonant XES (VtC RXES) plane. For comparison, standard total fluorescence yield (TFY) XAS and nonresonant XES data were obtained. Dramatic intensity variations and the appearance of new features were observed in the pre-edge region by detecting at different VtC emission energies. The TFY XAS, nonresonant XES, and VtC RXES data were all modeled within a density functional theory approach. While the TFY XAS and nonresonant XES data are readily interpreted by theory, the VtC RXES cannot be reproduced within such a simplified model. Nonetheless, dramatic changes in the experimental spectra are observed that have the potential to further the information content and selectivity of XAS. Potential applications and required theoretical developments are discussed.

20.
Inorg Chem ; 53(19): 10378-85, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25211540

RESUMO

Transition-metal Kß X-ray emission spectroscopy (XES) is a developing technique that probes the occupied molecular orbitals of a metal complex. As an element-specific probe of metal centers, Kß XES is finding increasing applications in catalytic and, in particular, bioinorganic systems. For the continued development of XES as a probe of these complex systems, however, the full range of factors which contribute to XES spectral modulations must be explored. In this report, an investigation of a series of oxo-bridged iron dimers reveals that the intensity of valence-to-core features is sensitive to the Fe-O-Fe bond angle. The intensity of these features has a well-known dependence on metal-ligand bond distance, but a dependence upon bond angle has not previously been documented. Herein, we explore the angular dependence of valence-to-core XES features both experimentally and computationally. Taken together, these results show that, as the Fe-O-Fe angle decreases, the intensity of the Kß″ feature increases and that this effect is modulated by increasing amounts of Fe np mixing into the O 2s orbital at smaller bond angles. The relevance of these findings to the identification of oxygenated intermediates in bioinorganic systems is highlighted, with special emphasis given to the case of soluble methane monooxygenase.


Assuntos
Compostos Ferrosos/química , Dimerização , Estrutura Molecular , Teoria Quântica , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA