Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 41(37): 7831-7847, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34348999

RESUMO

The principal neurons of the striatum, the spiny projection neurons (SPNs), make inhibitory synaptic connections with each other via collaterals of their main axon, forming a local lateral inhibition network. Serotonin, acting via the 5-HT1B receptor, modulates neurotransmitter release from SPN terminals in striatal output nuclei, but the role of 5-HT1B receptors in lateral inhibition among SPNs in the striatum is unknown. Here, we report the effects of 5-HT1B receptor activation on lateral inhibition in the mouse striatum. Whole-cell recordings were made from SPNs in acute brain slices of either sex, while optogenetically activating presynaptic SPNs or fast-spiking interneurons (FSIs). Activation of 5-HT1B receptors significantly reduced the amplitude of IPSCs evoked by optical stimulation of both direct and indirect pathway SPNs. This reduction was blocked by application of a 5-HT1B receptor antagonist. Activation of 5-HT1B receptors did not reduce the amplitude of IPSCs evoked from FSIs. These results suggest a new role for serotonin as a modulator of lateral inhibition among striatal SPNs. The 5-HT1B receptor may, therefore, be a suitable target for future behavioral experiments investigating the currently unknown role of lateral inhibition in the function of the striatum.SIGNIFICANCE STATEMENT We show that stimulation of serotonin receptors reduces the efficacy of lateral inhibition between spiny projection neurons (SPNs), one of the biggest GABAergic sources in the striatum, by activation of the serotonin 5-HT1B receptor. The striatum receives serotonergic input from the dorsal raphe nuclei and is important in behavioral brain functions like learning and action selection. Our findings suggest a new role for serotonin in modulating the dynamics of neural interactions in the striatum, which extends current knowledge of the mechanisms of the behavioral effects of serotonin.


Assuntos
Corpo Estriado/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
2.
J Comp Neurol ; 528(5): 787-804, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625606

RESUMO

Recent developments in genetic engineering have established murine models that permit the selective control of cholinergic neurons via optical stimulation. Despite copious benefits granted by these experimental advances, the sensory physiognomy of these organisms has remained poorly understood. Therefore, the present study evaluates sensory and neuronal response properties of animal models developed for the study of optically induced acetylcholine release regulation. Auditory brainstem responses, fluorescence imaging, and patch clamp recording techniques were used to assess the impact of viral infection, sex, age, and anesthetic agents across the ascending auditory pathway of ChAT-Cre and ChAT-ChR2(Ai32) mice. Data analyses revealed that neither genetic configuration nor adeno-associated viral infection alters the early stages of auditory processing or the cellular response properties of cholinergic neurons. However, anesthetic agent and dosage amount profoundly modulate the response properties of brainstem neurons. Last, analyses of age-related hearing loss in virally infected ChAT-Cre mice did not differ from those reported in wild type animals. This investigation demonstrates that ChAT-Cre and ChAT-ChR2(Ai32) mice are viable models for the study of cholinergic modulation in auditory processing, and it emphasizes the need for prudence in the selection of anesthetic procedures.


Assuntos
Anestésicos/farmacologia , Neurônios Colinérgicos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Modelos Animais , Opsinas/metabolismo , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA