RESUMO
The nervous and circulatory system interconnects the various organs of the human body, building hierarchically organized subsystems, enabling fine-tuned, metabolically expensive brain-body and inter-organ crosstalk to appropriately adapt to internal and external demands. A deviation or failure in the function of a single organ or subsystem could trigger unforeseen biases or dysfunctions of the entire network, leading to maladaptive physiological or psychological responses. Therefore, quantifying these networks in healthy individuals and patients may help further our understanding of complex disorders involving body-brain crosstalk. Here we present a generalized framework to automatically estimate metabolic inter-organ connectivity utilizing whole-body functional positron emission tomography (fPET). The developed framework was applied to 16 healthy subjects (mean age ± SD, 25 ± 6 years; 13 female) that underwent one dynamic 18F-FDG PET/CT scan. Multiple procedures of organ segmentation (manual, automatic, circular volumes) and connectivity estimation (polynomial fitting, spatiotemporal filtering, covariance matrices) were compared to provide an optimized thorough overview of the workflow. The proposed approach was able to estimate the metabolic connectivity patterns within brain regions and organs as well as their interactions. Automated organ delineation, but not simplified circular volumes, showed high agreement with manual delineation. Polynomial fitting yielded similar connectivity as spatiotemporal filtering at the individual subject level. Furthermore, connectivity measures and group-level covariance matrices did not match. The strongest brain-body connectivity was observed for the liver and kidneys. The proposed framework offers novel opportunities towards analyzing metabolic function from a systemic, hierarchical perspective in a multitude of physiological pathological states.
Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Feminino , Humanos , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Corpo Humano , Tomografia por Emissão de Pósitrons/métodos , Masculino , Adulto Jovem , AdultoRESUMO
INTRODUCTION: Ghrelin regulates a variety of functions by acting in the brain. The targets of ghrelin in the mouse brain have been mainly mapped using immunolabeling against c-Fos, a transcription factor used as a marker of cellular activation, but such analysis has several limitations. Here, we used positron emission tomography in mice to investigate the brain areas responsive to ghrelin. METHODS: We analyzed in male mice the brain areas responsive to systemically injected ghrelin using positron emission tomography imaging of 18F-fluoro-2-deoxyglucose (18F-FDG) uptake, an indicator of metabolic rate. Additionally, we studied if systemic administration of fluorescent ghrelin or native ghrelin displays symmetric accessibility or induction of c-Fos, respectively, in the brain of male mice. RESULTS: Ghrelin increased 18F-FDG uptake in few specific areas of the isocortex, striatum, pallidum, thalamus, and midbrain at 0-10-min posttreatment. At the 10-20 and 20-30 min posttreatment, ghrelin induced mixed changes in 18F-FDG uptake in specific areas of the isocortex, striatum, pallidum, thalamus, and midbrain, as well as in areas of the olfactory areas, hippocampal and retrohippocampal regions, hypothalamus, pons, medulla, and even the cerebellum. Ghrelin-induced changes in 18F-FDG uptake were transient and asymmetric. Systemically administrated fluorescent-ghrelin-labeled midline brain areas known to contain fenestrated capillaries and the hypothalamic arcuate nucleus, where a symmetric labeling was observed. Ghrelin treatment also induced a symmetric increased c-Fos labeling in the arcuate nucleus. DISCUSSION/CONCLUSION: Systemically injected ghrelin transiently and asymmetrically affects the metabolic activity of the brain of male mice in a wide range of areas, in a food intake-independent manner. The neurobiological bases of such asymmetry seem to be independent of the accessibility of ghrelin into the brain.
Assuntos
Fluordesoxiglucose F18 , Grelina , Camundongos , Masculino , Animais , Grelina/farmacologia , Grelina/metabolismo , Encéfalo/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismoRESUMO
Tauopathies are neurodegenerative diseases caused by the abnormal metabolism of the microtubule associated protein tau (MAPT), which is highly expressed in neurons and critically involved in microtubule dynamics. In the adult human brain, the alternative splicing of exon 10 in MAPT pre-mRNA produces equal amounts of protein isoforms with either three (3R) or four (4R) microtubule binding domains. Imbalance in the 3R:4R tau ratio is associated with primary tauopathies that develop atypical parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration. Yet, the development of effective therapies for those pathologies is an unmet goal. Here we report motor coordination impairments in the htau mouse model of tauopathy which harbour abnormal 3R:4R tau isoforms content, and in contrast to TauKO mice, are unresponsive to l-DOPA. Preclinical-PET imaging, array tomography and electrophysiological analyses indicated the dorsal striatum as the candidate structure mediating such phenotypes. Indeed, local modulation of tau isoforms by RNA trans-splicing in the striata of adult htau mice, prevented motor coordination deficits and restored basal neuronal firing. Together, these results suggest that abnormal striatal tau isoform content might lead to parkinsonian-like phenotypes and demonstrate a proof of concept that modulation of tau mis-splicing is a plausible disease-modifying therapy for some primary tauopathies.
Assuntos
Corpo Estriado/metabolismo , Transtornos Motores/metabolismo , Destreza Motora/fisiologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Processamento Alternativo , Animais , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Transtornos Motores/genética , Transtornos Motores/fisiopatologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tauopatias/genética , Tauopatias/fisiopatologia , Proteínas tau/genéticaRESUMO
Introduction: Dynamic positron emission tomography (PET) and the application of kinetic models can provide important quantitative information based on its temporal information. This however requires arterial blood sampling, which can be challenging to acquire. Nowadays, state-of-the-art PET/CT systems offer fully automated, whole-body (WB) kinetic modelling protocols using image-derived input functions (IDIF) to replace arterial blood sampling. Here, we compared the validity of an automatic WB kinetic model protocol to the reference standard arterial input function (AIF) for both clinical and research settings. Methods: Sixteen healthy participants underwent dynamic WB [18F]FDG scans using a continuous bed motion PET/CT system with simultaneous arterial blood sampling. Multiple processing pipelines that included automatic and manually generated IDIFs derived from the aorta and left ventricle, with and without motion correction were compared to the AIF. Subsequently generated quantitative images of glucose metabolism were compared to evaluate performance of the different input functions. Results: We observed moderate to high correlations between IDIFs and the AIF regarding area under the curve (r = 0.49-0.89) as well as for the cerebral metabolic rate of glucose (CMRGlu) (r = 0.68-0.95). Manual placing of IDIFs and motion correction further improved their similarity to the AIF. Discussion: In general, the automatic vendor protocol is a feasible approach for the quantification of CMRGlu for both, clinical and research settings where expertise or time is not available. However, we advise on a rigorous inspection of the placement of the volume of interest, the resulting IDIF, and the quantitative values to ensure valid interpretations. In protocols requiring longer scan times or where cohorts are prone to involuntary movement, manual IDIF definition with additional motion correction is recommended, as this has greater accuracy and reliability.