Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(6): 3171-3179, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291808

RESUMO

Herbicide-resistant weeds are increasingly a problem in crop fields when exposed to similar chemistry over time. To avoid future yield losses, identifying herbicidal chemistry needs to be accelerated. We screened 50,000 small molecules using a liquid-handling robot and light microscopy focusing on pre-emergent herbicides in the family of cellulose biosynthesis inhibitors. Through phenotypic, chemical, genetic, and in silico methods we uncovered 6-{[4-(2-fluorophenyl)-1-piperazinyl]methyl}-N-(2-methoxy-5-methylphenyl)-1,3,5-triazine-2,4-diamine (fluopipamine). Symptomologies support fluopipamine as a putative antagonist of cellulose synthase enzyme 1 (CESA1) from Arabidopsis (Arabidopsis thaliana). Ectopic lignification, inhibition of etiolation, phenotypes including loss of anisotropic cellular expansion, swollen roots, and live cell imaging link fluopipamine to cellulose biosynthesis inhibition. Radiolabeled glucose incorporation of cellulose decreased in short-duration experiments when seedlings were incubated in fluopipamine. To elucidate the mechanism, ethylmethanesulfonate mutagenized M2 seedlings were screened for fluopipamine resistance. Two loci of genetic resistance were linked to CESA1. In silico docking of fluopipamine, quinoxyphen, and flupoxam against various CESA1 mutations suggests that an alternative binding site at the interface between CESA proteins is necessary to preserve cellulose polymerization in compound presence. These data uncovered potential fundamental mechanisms of cellulose biosynthesis in plants along with feasible leads for herbicidal uses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Herbicidas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Celulose/química , Parede Celular/metabolismo , Glucosiltransferases/química , Plântula/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(25): 10177-82, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19520827

RESUMO

Male mosquitoes detect flying females using antennal hearing organs sensitive to nanoscale mechanical displacements and that harbor motile mechanosensory neurons. The mechanisms supporting neuronal motility, and their function in peripheral sensory processing, remain, however, puzzling. The mechanical and neural responses reveal a transition that unmasks the onset of synchronization between sensory neurons. This synchronization constitutes an unconventional, mechanically driven, process of communication between sensory neurons. Enhancing auditory sensitivity and selectivity, synchronization between mechanosensors in the mosquito arises from entrainment to twice-frequency forcing and is formally analogous to injection-locking in high-power laser technology. This discovery opens up the enticing possibility that other sensory systems, even nonsensory cell ensembles, coordinate their actions through mechanical signaling.


Assuntos
Vias Auditivas/fisiologia , Culicidae/fisiologia , Audição/fisiologia , Mecanotransdução Celular , Células Receptoras Sensoriais/fisiologia , Animais , Feminino , Masculino , Comportamento Sexual Animal
3.
J Vis Exp ; (134)2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29757282

RESUMO

Chemical genetics is increasingly being employed to decode traits in plants that may be recalcitrant to traditional genetics due to gene redundancy or lethality. However, the probability of a synthetic small molecule being bioactive is low; therefore, thousands of molecules must be tested in order to find those of interest. Liquid handling robotics systems are designed to handle large numbers of samples, increasing the speed with which a chemical library can be screened in addition to minimizing/standardizing error. To achieve a high-throughput forward chemical genetics screen of a library of 50,000 small molecules on Arabidopsis thaliana (Arabidopsis), protocols using a bench-top multichannel liquid handling robot were developed that require minimal technician involvement. With these protocols, 3,271 small molecules were discovered that caused visible phenotypic alterations. 1,563 compounds induced short roots, 1,148 compounds altered coloration, 383 compounds caused root hair and other, non-categorized, alterations, and 177 compounds inhibited germination.


Assuntos
Arabidopsis/química , Engenharia Química/métodos , Robótica/métodos
4.
R Soc Open Sci ; 5(1): 171082, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29410822

RESUMO

Across vertebrate and invertebrate species, nonlinear active mechanisms are employed to increase the sensitivity and acuity of hearing. In mosquitoes, the antennal hearing organs are known to use active force feedback to enhance auditory acuity to female generated sounds. This sophisticated form of signal processing involves active nonlinear events that are proposed to rely on the motile properties of mechanoreceptor neurons. The fundamental physical mechanism for active auditory mechanics is theorized to rely on a synchronization of motile neurons, with a characteristic frequency doubling of the force generated by an ensemble of motile mechanoreceptors. There is however no direct biomechanical evidence at the mechanoreceptor level, hindering further understanding of the fundamental mechanisms of sensitive hearing. Here, using in situ and in vivo atomic force microscopy, we measure and characterize the mechanical response of mechanosensory neuron units during forced oscillations of the hearing organ. Mechanoreceptor responses exhibit the hallmark of nonlinear feedback for force generation, with movements at twice the stimulus frequency, associated with auditory amplification. Simultaneous electrophysiological recordings exhibit similar response features, notably a frequency doubling of the firing rate. This evidence points to the nature of the mechanism, whereby active hearing in mosquitoes emerges from the double-frequency response of the auditory neurons. These results open up the opportunity to directly investigate active cellular mechanics in auditory systems, and they also reveal a pathway to study the nanoscale biomechanics and its dynamics of cells beyond the sense of hearing.

5.
Sci Rep ; 8(1): 15899, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367085

RESUMO

Oak barrels have been used by humans for thousands of years to store and transport valuable materials. Early settlers of the United States in Kentucky began charring the interior of new white oak barrels prior to aging distillate to create the distinctively flavored spirit we know as bourbon whiskey. Despite the unique flavor and cultural significance of "America's Spirit", little is known about the wood-distillate interaction that shapes bourbon whiskey. Here, we employed an inverse method to measure the loss of specific wood polysaccharides in the oak cask during aging for up to ten years. We found that the structural cell wall wood biopolymer, cellulose, was partially decrystallized by the charring process. This pyrolytic fracturing and subsequent exposure to the distillate was accompanied by a steady loss of sugars from the cellulose and hemicellulose fractions of the oak cask. Distinct layers of structural degradation and product release from within the barrel stave are formed over time as the distillate expands into and contracts from the barrel staves. This complex, wood-sugar release process is likely associated with the time-dependent generation of the unique palate of bourbon whiskey.

6.
Sci Rep ; 7(1): 5714, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720840

RESUMO

The biological function of sterol glucosides (SGs), the most abundant sterol derivatives in higher plants, remains uncertain. In an effort to improve our understanding of these membrane lipids we examined phenotypes exhibited by the roots of Arabidopsis (Arabidopsis thaliana) lines carrying insertions in the UDP-Glc:sterol glucosyltransferase genes, UGT80A2 and UGT80B1. We show that although ugt80A2 mutants exhibit significantly lower levels of total SGs they are morphologically indistinguishable from wild-type plants. In contrast, the roots of ugt80B1 mutants are only deficient in stigmasteryl glucosides but exhibit a significant reduction in root hairs. Sub-cellular investigations reveal that the plasma membrane cell fate regulator, SCRAMBLED (SCM), is mislocalized in ugt80B1 mutants, underscoring the aberrant root epidermal cell patterning. Live imaging of roots indicates that SCM:GFP is localized to the cytoplasm in a non cell type dependent manner instead of the hair (H) cell plasma membrane in these mutants. In addition, we provide evidence for the localization of the UGT80B1 enzyme in the plasma membrane. These data lend further support to the notion that deficiencies in specific SGs are sufficient to disrupt normal cell function and point to a possible role for SGs in cargo transport and/or protein targeting to the plasma membrane.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucosiltransferases/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular , Glucosídeos/metabolismo , Glucosiltransferases/genética , Mutação , Fenótipo , Raízes de Plantas/genética , Esteróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA