Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Haematol ; 204(2): 566-570, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38053270

RESUMO

While bortezomib has significant benefits in multiple myeloma (MM) therapy, the disease remains incurable due to the invariable development of bortezomib resistance. This emphasises the need for advanced models for preclinical evaluation of new therapeutic approaches for bortezomib-resistant MM. Here, we describe the development of an orthotopic syngeneic bortezomib-resistant MM mouse model based on the most well-characterised syngeneic MM mouse model derived from spontaneous MM-forming C57BL/KaLwRij mice. Using bortezomib-resistant 5TGM1 cells, we report and characterise a robust syngeneic mouse model of bortezomib-resistant MM that is well suited to the evaluation of new therapeutic approaches for proteasome inhibitor-resistant MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Animais , Camundongos , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Camundongos Endogâmicos C57BL , Inibidores de Proteassoma/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/uso terapêutico
2.
Blood ; 139(26): 3737-3751, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35443029

RESUMO

Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapêutico , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Ceramidas/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
J Lipid Res ; 61(4): 505-522, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32041816

RESUMO

Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.


Assuntos
Bainha de Mielina/fisiologia , Oligodendroglia/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Feminino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA