Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420645

RESUMO

Thermal stability is an important feature of the materials used as components and parts of sensors and other devices of nanoelectronics. Here we report the results of the computational study of the thermal stability of the triple layered Au@Pt@Au core-shell nanoparticles, which are promising materials for H2O2 bi-directional sensing. A distinct feature of the considered sample is the raspberry-like shape, due to the presence of Au nanoprotuberances on its surface. The thermal stability and melting of the samples were studied within classical molecular dynamics simulations. Interatomic forces were computed within the embedded atom method. To investigate the thermal properties of Au@Pt@Au nanoparticles, structural parameters such as Lindemann indexes, radial distribution functions, linear distributions of concentration, and atomistic configurations were calculated. As the performed simulations showed, the raspberry-like structure of the nanoparticle was preserved up to approximately 600 K, while the general core-shell structure was maintained up to approximately 900 K. At higher temperatures, the destruction of the initial fcc crystal structure and core-shell composition was observed for both considered samples. As Au@Pt@Au nanoparticles demonstrated high sensing performance due to their unique structure, the obtained results may be useful for the further design and fabrication of the nanoelectronic devices that are required to work within a certain range of temperatures.


Assuntos
Ouro , Nanopartículas Metálicas , Peróxido de Hidrogênio , Simulação de Dinâmica Molecular
2.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617054

RESUMO

Herein, we describe the design of a laboratory setup operating as a high-precision tribometer. The whole design procedure is presented, starting with a concept, followed by the creation of an exact 3D model and final assembly of all functional parts. The functional idea of the setup is based on a previously designed device that was used to perform more simple tasks. A series of experiments revealed certain disadvantages of the initial setup, for which pertinent solutions were found and implemented. Processing and correction of the data obtained from the device are demonstrated with an example involving backlash and signal drift errors. Correction of both linear and non-linear signal drift errors is considered. We also show that, depending on the research interests, the developed equipment can be further modified by alternating its peripheral parts without changing the main frame of the device.


Assuntos
Adesivos
3.
Eur J Neurosci ; 53(7): 2214-2219, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32237251

RESUMO

Lateralized differences in pallidal outflow are putatively linked to asymmetric tonic contractions of the neck muscles in cervical dystonia (CD). At the population level, the interhemispheric asymmetry has been traditionally studied for the estimation of the spectral power in specified frequency bands. Broadband spectral features, however, were not taken into consideration. The contemporary analysis revealed that the aperiodic (1/f) broadband activity could be a neurophysiological marker of the excitation/inhibition ratio. During deep brain stimulation (DBS) surgery, we measured bilateral pallidal local field potentials (LFP) in nine CD patients, examining the effects of lateralized asymmetry on 1/f broadband activity. All patients showed a trend towards an asymmetric difference in the 1/f broadband activity. The ipsilateral 1/f slope was significantly higher in internal (GPi) segment of the globus pallidus that is on the contralateral side of the direction of the dystonia. We also found lateralized differences in the beta oscillations for GPi and in the alpha oscillations for GPe. Our findings emphasize the importance of mainstreaming broadband activity in the estimation of LFP spectral features together with periodic features and provide further evidence for the pallidal asymmetry in CD patients.


Assuntos
Estimulação Encefálica Profunda , Torcicolo , Globo Pálido , Humanos
4.
Eur J Neurosci ; 53(7): 2388-2397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32757424

RESUMO

Focal dystonia, by definition, affects a specific body part; however, it may have a widespread neural substrate. We tested this hypothesis by examining the intrinsic behaviour and the neuronal properties that are modulated by changes in the physiological behaviour of their connections, that is feedback dependence, of the isolated pallidal neurons. During deep brain stimulation surgery in 12 patients with isolated cervical dystonia (without hand involvement), we measured spontaneous as well as evoked single-unit properties in response to fist making (hand movement) or shoulder shrug (neck movements). We measured the activity of isolated neurons that were only sensitive to the neck movements, hand movement, or not responsive to hand or neck movements. The spontaneous firing behaviour, such as the instantaneous firing rate and its regularity, was comparable in all three types of neurons. The neck movement-sensitive neurons had prominent bursting behaviour in comparison with the hand neurons. The feedback dependence of the neck movement-sensitive neurons was also significantly impaired when compared to hand movement-sensitive neurons. Motor-evoked change in firing rate of neck movement-sensitive neurons rapidly declined; the decay time constant was much shorter compared to hand movement-sensitive neurons. These results suggest that in isolated cervical dystonia, at the resolution of single neurons, the deficits are much widespread, affecting the neurons that drive the neck movement as well as the hand movements. We speculate that clinically discernable dystonia occurs when additional abnormality is added to baseline dysfunctional network, and one source of such abnormality may involve feedback.


Assuntos
Distonia , Distúrbios Distônicos , Retroalimentação , Globo Pálido , Humanos , Neurônios
5.
BMC Med Res Methodol ; 19(1): 11, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626327

RESUMO

BACKGROUND: A key element in the interaction between clinicians and patients with cancer is reassurance giving. Learning about the stochastic nature of reassurances as well as making inferential statements about the influence of covariates such as patient response and time spent on previous reassurances are of particular importance. METHODS: We fit Hidden Markov Models (HMMs) to reassurance type from multiple time series of clinicians' reassurances, decoded from audio files of review consultations between patients with breast cancer and their therapeutic radiographer. Assuming a latent state process driving the observations process, HMMs naturally accommodate serial dependence in the data. Extensions to the baseline model such as including covariates as well as allowing for fixed effects for the different clinicians are straightforward to implement. RESULTS: We found that clinicians undergo different states, in which they are more or less inclined to provide a particular type of reassurance. The states are very persistent, however switches occasionally occur. The lengthier the previous reassurance, the more likely the clinician is to stay in the current state. CONCLUSIONS: HMMs prove to be a valuable tool and provide important insights for practitioners. TRIAL REGISTRATION: Trial Registration number: ClinicalTrials.gov: NCT02599506. Prospectively registered on 11th March 2015.


Assuntos
Ansiedade/psicologia , Neoplasias da Mama/psicologia , Comunicação em Saúde , Relações Médico-Paciente , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Simulação por Computador , Feminino , Humanos , Estudos Longitudinais , Cadeias de Markov , Projetos Piloto
6.
Mov Disord ; 32(6): 904-912, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218416

RESUMO

BACKGROUND: Early theories for cervical dystonia, as promoted by Hassler, emphasized the role of the midbrain interstitial nucleus of Cajal. Focus then shifted to the basal ganglia, and it was further supported with the success of deep brain stimulation. Contemporary theories suggested the role of the cerebellum, but even more recent hypotheses renewed interest in the midbrain. Although the pretectum was visited on several occasions, we still do not know about the physiology of midbrain neurons in cervical dystonia. METHODS: We analyzed the unique database of pretectal neurons collected in the 1970s and 1980s during historic stereotactic surgeries aimed to treat cervical dystonia. This database is valuable because such recordings could otherwise never be obtained from humans. RESULTS: We found the following 3 types of eye or neck movement sensitivity: eye-only neurons responded to pure vertical eye movements, neck-only neurons were sensitive to pure neck movements, and the combined eye-neck neurons responded to eye and neck movements. There were the 2 neuronal subtypes: burst-tonic and tonic. The eye-neck or eye-only neurons sustained their activity during eccentric gaze holding. In contrast, the response of neck-only and eye-neck neurons exponentially decayed during neck movements. CONCLUSIONS: Modern quantitative analysis of a historic database of midbrain single units from patients with cervical dystonia might support novel hypotheses for normal and abnormal head movements. This data, collected almost 4 decades ago, must be carefully viewed, especially because it was acquired using a less sophisticated technology available at that time and the aim was not to address specific hypothesis, but to make an accurate lesion providing optimal relief from dystonia. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Conjuntos de Dados como Assunto , Movimentos Oculares/fisiologia , Movimentos da Cabeça/fisiologia , Pescoço/fisiopatologia , Neurônios/fisiologia , Área Pré-Tectal/fisiopatologia , Tegmento Mesencefálico/fisiopatologia , Torcicolo/fisiopatologia , Conjuntos de Dados como Assunto/história , Eletromiografia , Eletroculografia , História do Século XX , Humanos , Neurônios/citologia , Técnicas de Patch-Clamp , Área Pré-Tectal/citologia , Tegmento Mesencefálico/citologia , Torcicolo/história
7.
J Acoust Soc Am ; 141(1): 159, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28147612

RESUMO

Vocalizations of cetaceans form a key component of their social interactions. Such vocalization activity is driven by the behavioral states of the whales, which are not directly observable, so that latent-state models are natural candidates for modeling empirical data on vocalizations. In this paper, hidden Markov models are used to analyze calling activity of long-finned pilot whales (Globicephala melas) recorded over three years in the Vestfjord basin off Lofoten, Norway. Baseline models are used to motivate the use of three states, while more complex models are fit to study the influence of covariates on the state-switching dynamics. The analysis demonstrates the potential usefulness of hidden Markov models to concisely yet accurately describe the stochastic patterns found in animal communication data, thereby providing a framework for drawing meaningful biological inference.

8.
Biomimetics (Basel) ; 9(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248626

RESUMO

The quasi-static regime of friction between a rigid steel indenter and a soft elastomer with high adhesion is studied experimentally. An analysis of the formally calculated dependencies of a friction coefficient on an external load (normal force) shows that the friction coefficient monotonically decreases with an increase in the load, following a power law relationship. Over the entire range of contact loads, a friction mode is realized in which constant shear stresses are maintained in the tangential contact, which corresponds to the "adhesive" friction mode. In this mode, Amonton's law is inapplicable, and the friction coefficient loses its original meaning. Some classical works, which show the existence of a transition between "adhesive" and "normal" friction, were analyzed. It is shown that, in fact, there is no such transition. A computer simulation of the indentation process was carried out within the framework of the boundary element method, which confirmed the experimental results.

9.
J Epidemiol Community Health ; 78(7): 437-443, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38719734

RESUMO

INTRODUCTION: There is limited research evaluating 20 mph speed limit interventions, and long-term assessments are seldom conducted either globally or within the UK. This study evaluated the impact of the phased 20 mph speed limit implementation on road traffic collisions and casualties in the City of Edinburgh, UK over approximately 3 years post implementation. METHODS: We used four sets of complementary analyses for collision and casualty rates. First, we compared rates for road segments changing to 20 mph against those at 30 mph. Second, we compared rates for the seven implementation zones in the city against paired control zones. Third, we investigated citywide casualty rate trends using generalised additive model. Finally, we used simulation modelling to predict casualty rate changes based on changes in observed speeds. RESULTS: We found a 10% (95% CI -19% to 0%) greater reduction in casualties (8% for collisions) for streets that changed to 20 mph compared with those staying at 30 mph. However, the reduction was similar, 8% (95% CI -22% to 5%) for casualties (10% collisions), in streets that were already at 20 mph. In the implementation zones, we found a 20% (95% CI -22% to -8%) citywide reduction in casualties (22% for collisions) compared with control zones; this compared with a predicted 10% (95% CI -18% to -2%) reduction in injuries based on the changes in speed and traffic volume. Citywide casualties dropped 17% (95% CI 13% to 22%) 3 years post implementation, accounting for trend. CONCLUSION: Our results indicate that the introduction of 20 mph limits resulted in a reduction in collisions and casualties 3 years post implementation. However, the effect exceeded expectations from changes in speed alone, possibly due to a wider network effect.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Ferimentos e Lesões , Humanos , Acidentes de Trânsito/prevenção & controle , Ferimentos e Lesões/epidemiologia , Ferimentos e Lesões/prevenção & controle , Reino Unido
10.
Front Med (Lausanne) ; 10: 1134786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960336

RESUMO

Osteoarthritis is one of the most severe diseases of the human musculoskeletal system, and therefore, for many years, special attention has been paid to the search for effective methods of its treatment. However, even the most modern methods only in a limited number of cases in the early or intermediate stages of osteoarthritis lead to positive treatment results. In the later stages of development, osteoarthritis is practically incurable and most often ends with disability or the need for joint replacement for a large number of people. One of the main reasons hindering the development of osteoarthritis treatment methods is the peculiarities of articular cartilage, in which there is practically no vascular network and tissue homeostasis is carried out mainly due to the diffusion of nutrients present in the synovial fluid. In modern medicine, for the treatment of osteoarthritis, tissue engineering strategies have been developed based on the implantation of scaffolds populated with chondrogenic cells into the area of the defect. In vitro studies have established that these cells are highly mechanosensitive and, under the influence of mechanical stimuli of a certain type and intensity, their ability to proliferate and chondrogenesis increases. This property can be used to improve the efficiency of regenerative rehabilitation technologies based on the synergistic combination of cellular technologies, tissue engineering strategies, and mechanical tissue stimulation. In this work, using a regenerative rehabilitation mathematical model of local articular cartilage defects, numerical experiments were performed, the results of which indicate that the micro-and macro environment of the restored tissue, which changes during mechanical stimulation, has a significant effect on the formation of the extracellular matrix, and, consequently, cartilage tissue generally. The results obtained can be used to plan strategies for mechanical stimulation, based on the analysis of the results of cell proliferation experimental assessment after each stimulation procedure in vivo.

11.
Biomimetics (Basel) ; 8(6)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887608

RESUMO

In reported experiments, a steel indenter was pressed into a soft elastomer layer under varying inclination angles and subsequently was detached under various inclination angles too. The processes of indentation and detachment were recorded with a video camera, and the time dependences of the normal and tangential components of the contact force and the contact area, as well as the average contact pressure and average tangential stresses, were measured as functions of the inclination angle. Based on experimental results, a simple theoretical model of the indentation process is proposed, in which tangential and normal contacts are considered independently. Both experimental and theoretical results show that at small indentation angles (when the direction of motion is close to tangential), a mode with elastomer slippage relative to the indenter is observed, which leads to complex dynamic processes-the rearrangement of the contact boundary and the propagation of elastic waves (similar to Schallamach waves). If the angle is close to the normal angle, there is no slipping in the contact plane during the entire indentation (detachment) phase.

12.
R Soc Open Sci ; 10(12): 231775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094262

RESUMO

The effect of active sonars on marine mammal behaviour is a topic of considerable interest and scientific investigation. Some whales, including the largest species (blue whales, Balaenoptera musculus), can be impacted by mid-frequency (1-10 kHz) military sonars. Here we apply complementary experimental methods to provide the first experimentally controlled measurements of behavioural responses to military sonar and similar stimuli for a related endangered species, fin whales (Balaenoptera physalus). Analytical methods include: (i) principal component analysis paired with generalized additive mixed models; (ii) hidden Markov models; and (iii) structured expert elicitation using response severity metrics. These approaches provide complementary perspectives on the nature of potential changes within and across individuals. Behavioural changes were detected in five of 15 whales during controlled exposure experiments using mid-frequency active sonar or pseudorandom noise of similar frequency, duration and source and received level. No changes were detected during six control (no noise) sequences. Overall responses were more limited in occurrence, severity and duration than in blue whales and were less dependent upon contextual aspects of exposure and more contingent upon exposure received level. Quantifying the factors influencing marine mammal responses to sonar is critical in assessing and mitigating future impacts.

13.
Phys Rev Lett ; 108(10): 104301, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463410

RESUMO

Using the boundary element method, we calculate the normal interfacial stiffness and constriction resistance of two elastic bodies with randomly rough surfaces and varying fractal dimensions. The contact stiffness as a function of the applied normal force can be approximated by a power law, with an exponent varying from 0.51 to 0.77 for fractal dimensions varying from 2 to 3.

14.
Micromachines (Basel) ; 13(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888958

RESUMO

Serious tool wear occurs very often during machining due to the reinforcing phases in the workpiece. In this study, micro-pit-textures were prepared on the surfaces of PCD tools with a nanosecond laser to improve their cutting performance on SiCp/Al composites. The micro-pits were designed with rounded corners to improve the chip flow. The location and size of the texture were determined by analyzing the tool-chip contact area of the non-textured tool. The cutting performance of these textured PCD tools was investigated through orthogonal cutting experiments. It was found that the optimal cutting performance of the textured tools was achieved with the proper distance of the texture from the main cutting edge (35 µm) and the pit spacing (60 µm), aa a result of which the main cutting force reduced by about 14%, and the tool wear and surface adhesion significantly reduced. This texture was then applied in the micro-turning experiments of the PCD tool on the SiCp/Al composites. The cutting force in this experiment reduced by 22%, and the textured tool provided better chip transfer and tool anti-tipping. In this study, the role of SiC particles as a third body between the tool and the chip surface is discussed.

15.
ACS Nano ; 16(8): 11742-11754, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35732039

RESUMO

Individual single-walled carbon nanotubes with covalent sidewall defects have emerged as a class of photon sources whose photoluminescence spectra can be tailored by the carbon nanotube chirality and the attached functional group/molecule. Here we present electroluminescence spectroscopy data from single-tube devices based on (7, 5) carbon nanotubes, functionalized with dichlorobenzene molecules, and wired to graphene electrodes. We observe electrically generated, defect-induced emissions that are controllable by electrostatic gating and strongly red-shifted compared to emissions from pristine nanotubes. The defect-induced emissions are assigned to excitonic and trionic recombination processes by correlating electroluminescence excitation maps with electrical transport and photoluminescence data. At cryogenic conditions, additional gate-dependent emission lines appear, which are assigned to phonon-assisted hot-exciton electroluminescence from quasi-levels. Similar results were obtained with functionalized (6, 5) nanotubes. We also compare functionalized (7, 5) electroluminescence data with photoluminescence of pristine and functionalized (7, 5) nanotubes redox-doped using gold(III) chloride solution. This work shows that electroluminescence excitation is selective toward neutral defect-state configurations with the lowest transition energy, which in combination with gate-control over neutral versus charged defect-state emission leads to high spectral purity.

16.
ACS Nano ; 16(10): 16038-16053, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36167339

RESUMO

The coaxial stacking of two single-wall carbon nanotubes (SWCNTs) into a double-wall carbon nanotube (DWCNT), forming a so-called one-dimensional van der Waals structure, leads to synergetic effects that dramatically affect the optical and electronic properties of both layers. In this work, we explore these effects in purified DWCNT samples by combining absorption, wavelength-dependent infrared fluorescence-excitation (PLE), and wavelength-dependent resonant Raman scattering (RRS) spectroscopy. Purified DWCNTs are obtained by careful solubilization that strictly avoids ultrasonication or by electronic-type sorting, both followed by a density gradient ultracentrifugation to remove unwanted SWCNTs that could obscure the DWCNT characterization. Chirality-dependent shifts of the radial breathing mode vibrational frequencies and transition energies of the inner and outer DWCNT walls with respect to their SWCNT analogues are determined by advanced two-dimensional fitting of RRS and PLE data of DWCNT and their reference SWCNT samples. This exhaustive data set verifies that fluorescence from the inner DWCNT walls of well-purified samples is severely quenched through efficient energy transfer from the inner to the outer DWCNT walls. Combined analysis of the PLE and RRS results further reveals that this transfer is dependent on the inner and outer wall chirality, and we identify the specific combinations dominant in our DWCNT samples. These obtained results demonstrate the necessity and value of a combined structural characterization approach including PLE and RRS spectroscopy for bulk DWCNT samples.

17.
Phys Rev Lett ; 106(2): 025502, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405240

RESUMO

We propose a model for a description of formation of quasiperiodic nanoscale patterns induced by scratching a surface with an atomic force microscope tip. The simulations demonstrate that the interplay between the developing surface corrugation and the frictional stress produced by the moving tip plays a decisive role in the formation of the regular ripples. Our model reveals the size and shape of the tip as the main factors that determine periodicity and amplitudes of the patterns, and it allows experimental observations to be explained. It is shown that the wear at the nanoscale cannot be explained by conventional macroscopic wear theories.

18.
J Theor Biol ; 276(1): 126-31, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21295591

RESUMO

Most biological hairy adhesive systems of insects, arachnids, and reptiles, involved in locomotion, rely not on flat punches on their tips, but rather on spatulate structures. Several hypotheses have been previously proposed to explain the functional importance of this particular contact geometry: (1) enhancement of adaptability to the rough substrate; (2) contact formation by shear force rather than by normal load; (3) increase in total peeling line due to the use of an array of multiple spatulae; (4) contact breakage by peeling off. In the present paper, we used numerical approach to study dynamics of spatulate tips during contact formation on rough substrates. The model clearly demonstrates that the contact area increases under applied shear force, especially when spatulae are misaligned prior to the contact formation. Applied shear force has an optimum describing the situation when maximal contact is formed but no slip occurs. At such equilibrium, maximal adhesion can be generated. This principle manifests the crucial role of spatulate terminal elements in biological fibrillar adhesion.


Assuntos
Estruturas Animais/anatomia & histologia , Estresse Mecânico , Adesividade , Estruturas Animais/ultraestrutura , Animais , Fenômenos Biomecânicos , Elasticidade , Análise Numérica Assistida por Computador , Fatores de Tempo
19.
Clin Neurophysiol ; 132(12): 3190-3196, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34627682

RESUMO

OBJECTIVE: In patients with cervical dystonia we sought for the differences in neuronal behavior of pallidal regions where deep brain stimulation resulted in favorable therapeutic response compared to those where the response was absent. METHODS: We compared single-unit activity of 564 neurons recorded from deep brain stimulation sensitive and non-sensitive regions in 17 cervical dystonia patients. RESULTS: Globus pallidus internus regions responsive to the deep brain stimulation had lower firing rates and bursting compared to non-responsive areas. The differences were robust in locations where neuronal responses correlated with neck movements. Per the effects of deep brain stimulation, the pallidal regions were classified in weak, intermediate, and excellent responsive. Pallidal regions with weak response to deep brain stimulation had fewer burst neurons and higher firing rate compared to neurons in areas with excellent response. The burst index was significantly decreased in excellent response regions. There was a significant decrease in the alpha band oscillation score but a substantial increase in the gamma band in excellent response neurons. CONCLUSION: The pallidal region that would be responsive to deep brain stimulation has distinct physiology compared to the non-responsive region. SIGNIFICANCE: These results provide novel insights into globus pallidus interna neurons' physiology in cervical dystonia.


Assuntos
Potenciais de Ação/fisiologia , Globo Pálido/fisiopatologia , Neurônios/fisiologia , Torcicolo/terapia , Adulto , Estimulação Encefálica Profunda , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Torcicolo/fisiopatologia , Adulto Jovem
20.
Phys Rev E ; 102(6-1): 063001, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466084

RESUMO

In the textbook formulation of dry friction laws, static and dynamic friction (stick and slip) are qualitatively different and sharply separated phenomena. However, accurate measurements of stick-slip motion generally show that static friction is not truly static but characterized by a slow creep that, upon increasing tangential load, smoothly accelerates into bulk sliding. Microscopic, contact-mechanical, and phenomenological models have been previously developed to account for this behavior. In the present work, we show that it may instead be a systemic property of the measurement apparatus. Using a mechanical model that exhibits the characteristics of typical setups of measuring friction forces-which usually have very high transverse stiffness-and assuming a small but nonzero misalignment angle in the contact plane, we observe some fairly counterintuitive behavior: Under increasing longitudinal loading, the system almost immediately starts sliding perpendicularly to the pulling direction. Then the friction force vector begins to rotate in the plane, gradually approaching the pulling direction. When the angle between the two becomes small, bulk sliding sets in quickly. Although the system is sliding the entire time, macroscopic stick-slip behavior is reproduced very well, as is the accelerated creep during the "stick" phase. The misalignment angle is identified as a key parameter governing the stick-to-slip transition. Numerical results and theoretical considerations also reveal the presence of high-frequency transverse oscillations during the "static" phase, which are also transmitted into the longitudinal direction by nonlinear processes. Stability analysis is carried out and suggests dynamic probing methods for the approaching moment of bulk slip and the possibility of suppressing stick-slip instabilities by changing the misalignment angle and other system parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA