Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 29(46): 14284-92, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24160686

RESUMO

Coordination chemistry was applied to deposit pyridine-functionalized gold nanoparticles on silicon substrates. The particles were synthesized through the Brust/Schiffrin route with a subsequent ligand exchange reaction yielding well-defined particles of two different sizes. Multilayer deposition was carried out on a pyridine-terminated SAM, anchored on a hydroxyl-terminated silicon surface. Analogously, Hunter/Vögtle-type tetralactam macrocycle multilayers were deposited as well as mixed layers containing both either in an alternating sequence or as a macrocycle multilayer with a terminating nanoparticle layer. These composite layers were examined with respect to their ability to bind squaraine axles in the macrocycle cavities. The amount of guest bound is higher for the composite layer with alternating macrocycles and nanoparticles.

2.
J Am Chem Soc ; 134(39): 16289-97, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22947111

RESUMO

The deposition of tetralactam macrocycles and the corresponding benzyl ether rotaxanes on gold substrates is investigated for the first time exploiting metallo-supramolecular chemistry. Two pyridine-terminated self-assembled monolayers (SAMs) are developed that are used as well-ordered template layers. The two SAMs differ with respect to the rigidity of the terminal pyridines as shown by angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The template layers are then used for the metal-mediated self-assembly of macrocylces and rotaxanes on solid supports. The SAM with the more rigid terminal pyridine shows a higher coverage with the macrocycles and is therefore preferable. Angle-resolved NEXAFS spectroscopy also shows the deposited supramolecules to be oriented preferentially upright. This order is only achieved for the macrocycles through the deposition on the more rigid SAM template, whereas rotaxanes form oriented layers on both SAMs. Time-of-flight secondary-ion mass spectrometry analysis was used to determine the deposition time required for the self-assembly process.

3.
Langmuir ; 28(29): 10755-63, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22741945

RESUMO

Aiming at the functionalization of surfaces with terpyridine anchors for the coordinative deposition of additional layers, mixed self-assembled monolayers (SAMs) were prepared from binary solutions of 12-(2,2':6',2″-terpyridine-4'-yl)dodecane-1-thiol (TDT) and 1-decanethiol (DT). The SAMs and the order of the constituting molecules were analyzed by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and time-of-flight-secondary ion mass spectrometry (ToF-SIMS). The composition of the (TDT/DT)-SAMs and with it the surface density of terpyridyl groups correlates linearly with the relative concentrations of the two compounds in the solution used for depositing them. In marked contrast, the amount of terpyridine-coordinated Pd(II) ions significantly deviates from this trend with an optimum at a 1:3 ratio of TDT/DT. This indicates a major fraction of the terpyridines in TDT-rich SAMs not to be accessible for Pd(II) ion coordination. In agreement, NEXAFS spectroscopy reveals the alkyl backbones in TDT-rich SAMs not to be ordered, while they are preferentially upright oriented in the optimal 1:3-(TDT/DT)-SAMs. We interpret this in terms of terpyridine backfolding in TDT-rich SAMs, while they are located in accessible positions on top of the SAM in the 1:3-(TDT/DT)-SAM. While the alkyl backbones in the 1:3-(TDT/DT)-SAM are ordered, NEXAFS spectroscopy shows the terpyridyl groups not to have a preferential orientation in this SAM and thus retain enough flexibility to adjust to molecules that are deposited on top of the mixed SAM. In conclusion, the novel SAM does not undergo phase separation and consists predominantly of intermixed phases with adjustable surface density of quite flexible terpyridine anchor groups. The terpyridine-Pd(II) anchors are not only available for a future deposition of the next layer, but the metal ions also represent a sensitive probe for the accessibility of the terpyridyl groups.


Assuntos
Complexos de Coordenação/química , Ouro/química , Paládio/química , Piridinas/química , Complexos de Coordenação/síntese química , Íons/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA