Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Appl Opt ; 60(19): D52-D72, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263828

RESUMO

Over the last decade, the vector-apodizing phase plate (vAPP) coronagraph has been developed from concept to on-sky application in many high-contrast imaging systems on 8 m class telescopes. The vAPP is a geometric-phase patterned coronagraph that is inherently broadband, and its manufacturing is enabled only by direct-write technology for liquid-crystal patterns. The vAPP generates two coronagraphic point spread functions (PSFs) that cancel starlight on opposite sides of the PSF and have opposite circular polarization states. The efficiency, that is, the amount of light in these PSFs, depends on the retardance offset from a half-wave of the liquid-crystal retarder. Using different liquid-crystal recipes to tune the retardance, different vAPPs operate with high efficiencies (${\gt}96\%$) in the visible and thermal infrared (0.55 µm to 5 µm). Since 2015, seven vAPPs have been installed in a total of six different instruments, including Magellan/MagAO, Magellan/MagAO-X, Subaru/SCExAO, and LBT/LMIRcam. Using two integral field spectrographs installed on the latter two instruments, these vAPPs can provide low-resolution spectra (${\rm{R}} \sim 30$) between 1 µm and 5 µm. We review the design process, development, commissioning, on-sky performance, and first scientific results of all commissioned vAPPs. We report on the lessons learned and conclude with perspectives for future developments and applications.

2.
Opt Express ; 27(23): 33925-33941, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878452

RESUMO

Detecting and monitoring gas species is an important part of remote sensing because the state of the environment can be retrieved from the state of the gas species. This can be used to track temperature and pressure structures in the atmosphere for weather predictions, or monitor the air quality. Discriminating different species is easier at higher spectral resolution when the spectral lines are clearly resolved. The need to do this at high spatial resolution and over large fields of view leads to a trade-off between spectral and spatial resolution and spectral bandwidth. We propose to use a highly multiplexed Bragg grating that can optically combine the relevant information from the spectrum without the need to disperse the whole spectrum. This allows us to circumvent the spatial and spectral trade-off and therefore substantially increase the field of view compared to conventional hyperspectral imagers. A dynamic implementation based on acousto-optical filters that can be adapted on the fly is discussed as an easy and flexible way to create the multiplexed gratings. We describe the details of multiplexed Bragg gratings and show that we can retrieve the spatial distribution of individual species abundances in gas mixtures, and we show that we can even do this for the atmospheres of exoplanets orbiting far-away stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA