Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 14(7): e0219408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339902

RESUMO

The island of New Guinea hosts the third largest expanse of tropical rainforest on the planet. Papua New Guinea-comprising the eastern half of the island-plans to nearly double its national road network (from 8,700 to 15,000 km) over the next three years, to spur economic growth. We assessed these plans using fine-scale biophysical and environmental data. We identified numerous environmental and socioeconomic risks associated with these projects, including the dissection of 54 critical biodiversity habitats and diminished forest connectivity across large expanses of the island. Key habitats of globally endangered species including Goodfellow's tree-kangaroo (Dendrolagus goodfellowi), Matchie's tree kangaroo (D. matschiei), and several birds of paradise would also be bisected by roads and opened up to logging, hunting, and habitat conversion. Many planned roads would traverse rainforests and carbon-rich peatlands, contradicting Papua New Guinea's international commitments to promote low-carbon development and forest conservation for climate-change mitigation. Planned roads would also create new deforestation hotspots via rapid expansion of logging, mining, and oil-palm plantations. Our study suggests that several planned road segments in steep and high-rainfall terrain would be extremely expensive in terms of construction and maintenance costs. This would create unanticipated economic challenges and public debt. The net environmental, social, and economic risks of several planned projects-such as the Epo-Kikori link, Madang-Baiyer link, Wau-Malalaua link, and some other planned projects in the Western and East Sepik Provinces-could easily outstrip their overall benefits. Such projects should be reconsidered under broader environmental, economic, and social grounds, rather than short-term economic considerations.


Assuntos
Desenvolvimento Sustentável , Biodiversidade , Conservação dos Recursos Naturais , Florestas , Geografia , Papua Nova Guiné , Chuva , Risco
2.
Ecol Evol ; 8(8): 4237-4251, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721294

RESUMO

Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.

3.
Sci Rep ; 7(1): 6071, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729670

RESUMO

Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.


Assuntos
Calamus , Florestas , Floresta Úmida , Clima Tropical , Conservação dos Recursos Naturais , Demografia , Ecossistema , Meio Ambiente
4.
PLoS One ; 9(3): e91870, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642914

RESUMO

Tree kangaroos (Macropodidae, Dendrolagus) are some of Australasia's least known mammals. However, there is sufficient evidence of population decline and local extinctions that all New Guinea tree kangaroos are considered threatened. Understanding spatial requirements is important in conservation and management. Expectations from studies of Australian tree kangaroos and other rainforest macropodids suggest that tree kangaroos should have small discrete home ranges with the potential for high population densities, but there are no published estimates of spatial requirements of any New Guinea tree kangaroo species. Home ranges of 15 Huon tree kangaroos, Dendrolagus matschiei, were measured in upper montane forest on the Huon Peninsula, Papua New Guinea. The home range area was an average of 139.6±26.5 ha (100% MCP; n = 15) or 81.8±28.3 ha (90% harmonic mean; n = 15), and did not differ between males and females. Home ranges of D. matschiei were 40-100 times larger than those of Australian tree kangaroos or other rainforest macropods, possibly due to the impact of hunting reducing density, or low productivity of their high altitude habitat. Huon tree kangaroos had cores of activity within their range at 45% (20.9±4.1 ha) and 70% (36.6±7.5 ha) harmonic mean isopleths, with little overlap (4.8±2.9%; n = 15 pairs) between neighbouring females at the 45% isopleth, but, unlike the Australian species, extensive overlap between females (20.8±5.5%; n = 15 pairs) at the complete range (90% harmonic mean). Males overlapped each other and females to a greater extent than did pairs of females. From core areas and overlap, the density of female D. matschiei was one per 19.4 ha. Understanding the cause of this low density is crucial in gaining greater understanding of variations in density of tree kangaroos across the landscape. We consider the potential role of habitat fragmentation, productivity and hunting pressure in limiting tree kangaroo density in New Guinea rainforests.


Assuntos
Macropodidae/fisiologia , Análise Espacial , Altitude , Animais , Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Feminino , Florestas , Masculino , Papua Nova Guiné , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA