RESUMO
Rationale: Benzene has been classified as carcinogenic to humans, but there is limited evidence linking benzene exposure to lung cancer. Objectives: We aimed to examine the relationship between occupational benzene exposure and lung cancer. Methods: Subjects from 14 case-control studies across Europe and Canada were pooled. We used a quantitative job-exposure matrix to estimate benzene exposure. Logistic regression models assessed lung cancer risk across different exposure indices. We adjusted for smoking and five main occupational lung carcinogens and stratified analyses by smoking status and lung cancer subtypes. Measurements and Main Results: Analyses included 28,048 subjects (12,329 cases, 15,719 control subjects). Lung cancer odds ratios ranged from 1.12 (95% confidence interval, 1.03-1.22) to 1.32 (95% confidence interval, 1.18-1.48) (Ptrend = 0.002) for groups with the lowest and highest cumulative occupational exposures, respectively, compared with unexposed subjects. We observed an increasing trend of lung cancer with longer duration of exposure (Ptrend < 0.001) and a decreasing trend with longer time since last exposure (Ptrend = 0.02). These effects were seen for all lung cancer subtypes, regardless of smoking status, and were not influenced by specific occupational groups, exposures, or studies. Conclusions: We found consistent and robust associations between different dimensions of occupational benzene exposure and lung cancer after adjusting for smoking and main occupational lung carcinogens. These associations were observed across different subgroups, including nonsmokers. Our findings support the hypothesis that occupational benzene exposure increases the risk of developing lung cancer. Consequently, there is a need to revisit published epidemiological and molecular data on the pulmonary carcinogenicity of benzene.
Assuntos
Neoplasias Pulmonares , Doenças Profissionais , Exposição Ocupacional , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Benzeno/toxicidade , Exposição Ocupacional/efeitos adversos , Carcinógenos , Pulmão , Estudos de Casos e Controles , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/epidemiologiaRESUMO
Depression, anxiety and other psychosocial factors are hypothesized to be involved in cancer development. We examined whether psychosocial factors interact with or modify the effects of health behaviors, such as smoking and alcohol use, in relation to cancer incidence. Two-stage individual participant data meta-analyses were performed based on 22 cohorts of the PSYchosocial factors and CAncer (PSY-CA) study. We examined nine psychosocial factors (depression diagnosis, depression symptoms, anxiety diagnosis, anxiety symptoms, perceived social support, loss events, general distress, neuroticism, relationship status), seven health behaviors/behavior-related factors (smoking, alcohol use, physical activity, body mass index, sedentary behavior, sleep quality, sleep duration) and seven cancer outcomes (overall cancer, smoking-related, alcohol-related, breast, lung, prostate, colorectal). Effects of the psychosocial factor, health behavior and their product term on cancer incidence were estimated using Cox regression. We pooled cohort-specific estimates using multivariate random-effects meta-analyses. Additive and multiplicative interaction/effect modification was examined. This study involved 437,827 participants, 36,961 incident cancer diagnoses, and 4,749,481 person years of follow-up. Out of 744 combinations of psychosocial factors, health behaviors, and cancer outcomes, we found no evidence of interaction. Effect modification was found for some combinations, but there were no clear patterns for any particular factors or outcomes involved. In this first large study to systematically examine potential interaction and effect modification, we found no evidence for psychosocial factors to interact with or modify health behaviors in relation to cancer incidence. The behavioral risk profile for cancer incidence is similar in people with and without psychosocial stress.
Assuntos
Neoplasias , Masculino , Humanos , Neoplasias/psicologia , Ansiedade/etiologia , Fumar , Consumo de Bebidas Alcoólicas , Comportamentos Relacionados com a SaúdeRESUMO
The Cohort Study of Mobile Phone Use and Health (COSMOS) has repeatedly collected self-reported and operator-recorded data on mobile phone use. Assessing health effects using self-reported information is prone to measurement error, but operator data were available prospectively for only part of the study population and did not cover past mobile phone use. To optimize the available data and reduce bias, we evaluated different statistical approaches for constructing mobile phone exposure histories within COSMOS. We evaluated and compared the performance of 4 regression calibration (RC) methods (simple, direct, inverse, and generalized additive model for location, shape, and scale), complete-case analysis, and multiple imputation in a simulation study with a binary health outcome. We used self-reported and operator-recorded mobile phone call data collected at baseline (2007-2012) from participants in Denmark, Finland, the Netherlands, Sweden, and the United Kingdom. Parameter estimates obtained using simple, direct, and inverse RC methods were associated with less bias and lower mean squared error than those obtained with complete-case analysis or multiple imputation. We showed that RC methods resulted in more accurate estimation of the relationship between mobile phone use and health outcomes by combining self-reported data with objective operator-recorded data available for a subset of participants.
Assuntos
Uso do Telefone Celular , Autorrelato , Humanos , Uso do Telefone Celular/estatística & dados numéricos , Uso do Telefone Celular/efeitos adversos , Medição de Risco/métodos , Análise de Regressão , Masculino , Feminino , Calibragem , Viés , Telefone Celular/estatística & dados numéricos , Reino Unido , Pessoa de Meia-Idade , AdultoRESUMO
Individual participant data (IPD) meta-analysis provides important opportunities to study interaction and effect modification for which individual studies often lack power. While previous meta-analyses have commonly focused on multiplicative interaction, additive interaction holds greater relevance for public health and may in certain contexts better reflect biological interaction. Methodological literature on interaction in IPD meta-analysis does not cover additive interaction for models including binary or time-to-event outcomes. We aimed to describe how the Relative Excess Risk due to Interaction (RERI) and other measures of additive interaction or effect modification can be validly estimated within two-stage IPD meta-analysis. First, we explain why direct pooling of study-level RERI estimates may lead to invalid results. Next, we propose a three-step procedure to estimate additive interaction: 1) estimate effects of both exposures and their product term on the outcome within each individual study; 2) pool study-specific estimates using multivariate meta-analysis; 3) estimate an overall RERI and 95% confidence interval based on the pooled effect estimates. We illustrate this procedure by investigating interaction between depression and smoking and risk of smoking-related cancers using data from the PSYchosocial factors and Cancer (PSY-CA) consortium. We discuss implications of this procedure, including the application in meta-analysis based on published data.
RESUMO
BACKGROUND: Although behavioral mechanisms in the association among depression, anxiety, and cancer are plausible, few studies have empirically studied mediation by health behaviors. We aimed to examine the mediating role of several health behaviors in the associations among depression, anxiety, and the incidence of various cancer types (overall, breast, prostate, lung, colorectal, smoking-related, and alcohol-related cancers). METHODS: Two-stage individual participant data meta-analyses were performed based on 18 cohorts within the Psychosocial Factors and Cancer Incidence consortium that had a measure of depression or anxiety (N = 319 613, cancer incidence = 25 803). Health behaviors included smoking, physical inactivity, alcohol use, body mass index (BMI), sedentary behavior, and sleep duration and quality. In stage one, path-specific regression estimates were obtained in each cohort. In stage two, cohort-specific estimates were pooled using random-effects multivariate meta-analysis, and natural indirect effects (i.e. mediating effects) were calculated as hazard ratios (HRs). RESULTS: Smoking (HRs range 1.04-1.10) and physical inactivity (HRs range 1.01-1.02) significantly mediated the associations among depression, anxiety, and lung cancer. Smoking was also a mediator for smoking-related cancers (HRs range 1.03-1.06). There was mediation by health behaviors, especially smoking, physical inactivity, alcohol use, and a higher BMI, in the associations among depression, anxiety, and overall cancer or other types of cancer, but effects were small (HRs generally below 1.01). CONCLUSIONS: Smoking constitutes a mediating pathway linking depression and anxiety to lung cancer and smoking-related cancers. Our findings underline the importance of smoking cessation interventions for persons with depression or anxiety.
Assuntos
Ansiedade , Depressão , Comportamentos Relacionados com a Saúde , Neoplasias , Fumar , Humanos , Neoplasias/epidemiologia , Neoplasias/psicologia , Depressão/epidemiologia , Ansiedade/epidemiologia , Incidência , Fumar/epidemiologia , Masculino , Comportamento Sedentário , Feminino , Consumo de Bebidas Alcoólicas/epidemiologia , Pessoa de Meia-Idade , AdultoRESUMO
Light exposure affects the circadian system and consequently can affect sleep quality. Only few studies examined this relationship in children. We evaluated associations between light exposure patterns and sleep metrics in children. We measured the sleep parameters of 247 Dutch children, aged between 11 and 13 years and recruited from the ABCD cohort, using actigraphy and sleep records for 7 consecutive nights. Personal light exposures were measured with a light meter during the whole day and night. We applied generalized mixed-effects regression models, adjusted for possible confounders, to evaluate the associations of light exposure patterns on sleep duration, sleep efficiency and sleep-onset delay. In the models mutually adjusted for potential confounders, we found the amount of hours between the first time of bright light in the morning and going to sleep and the duration of bright light to be significantly associated with decreased sleep duration (in min; ß: -2.02 [95% confidence interval: -3.84, -0.25], ß: -8.39 [95% confidence interval: -16.70, -0.07], respectively) and with shorter sleep-onset delay (odds ratio: 0.88 [95% confidence interval: 0.80, 0.97], odds ratio: 0.40 [95% confidence interval: 0.19, 0.87], respectively). Increased light intensities at night were associated with decreased sleep duration (T2 ß: -8.54 [95% confidence interval: -16.88, -0.20], T3 ß: -14.83 [95% confidence interval: -28.04, -1.62]), while increased light intensities before going to bed were associated with prolonged sleep onset (odds ratio: 4.02 [95% confidence interval: 2.09, 7.73]). These findings further suggest that children may be able to influence their sleep quality by influencing the light exposure patterns during day and night.
RESUMO
Dioxin(-like) exposures are linked to adverse health effects, including cancer. However, metabolic alterations induced by these chemicals remain largely unknown. Beyond known dioxin(-like) compounds, we leveraged a chemical-wide approach to assess chlorinated co-exposures and parent compound products [termed dioxin(-like)-related compounds] among 137 occupational workers. Endogenous metabolites were profiled by untargeted metabolomics, namely, reversed-phase chromatography with negative electrospray ionization (C18-negative) and hydrophilic interaction liquid chromatography with positive electrospray ionization (HILIC-positive). We performed a metabolome-wide association study to select dioxin(-like) associated metabolic features using a 20% false discovery rate threshold. Metabolic features were then characterized by pathway enrichment analyses. There are no significant features associated with polychlorinated dibenzo-p-dioxins (PCDDs), a subgroup of known dioxin(-like) compounds. However, 3,110 C18-negative and 2,894 HILIC-positive features were associated with at least one of the PCDD-related compounds. Abundant metabolic changes were also observed for polychlorinated dibenzofuran-related and polychlorinated biphenyl-related compounds. These metabolic features were primarily enriched in pathways of amino acids, lipid and fatty acids, carbohydrates, cofactors, and nucleotides. Our study highlights the potential of chemical-wide analysis for comprehensive exposure assessment beyond targeted chemicals. Coupled with advanced endogenous metabolomics, this approach allows for an in-depth exploration of metabolic alterations induced by environmental chemicals.
Assuntos
Dioxinas , Neoplasias , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , MetabolomaRESUMO
This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Microbioma Gastrointestinal , Humanos , Masculino , Londres , Feminino , Pessoa de Meia-Idade , Estudos Cross-Over , Poluição Relacionada com o Tráfego , Dióxido de NitrogênioRESUMO
Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden that has been linked to multiple diseases including lung cancer. In Xuanwei, China, lung cancer rate for non-smoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal. Alu retroelements, repetitive mobile DNA sequences that can somatically multiply and promote genomic instability have been associated with risk of lung cancer and diesel engine exhaust exposure. We conducted analyses for 160 non-smoking women in an exposure assessment study in Xuanwei, China with a repeat sample from 49 subjects. Quantitative PCR was used to measure Alu repeat copy number relative to albumin gene copy number (Alu/ALB ratio). Associations between clusters derived from predicted levels of 43 HAP constituents, 5-methylchrysene (5-MC), a PAH previously associated with lung cancer in Xuanwei and was selected a priori for analysis, and Alu repeats were analyzed using generalized estimating equations. A cluster of 31 PAHs reflecting current exposure was associated with increased Alu copy number (ß:0.03 per standard deviation change; 95% confidence interval (CI):0.01,0.04; P-valueâ =â 2E-04). One compound within this cluster, 5-MC, was also associated with increased Alu copy number (P-valueâ =â 0.02). Our findings suggest that exposure to PAHs due to indoor smoky coal combustion may contribute to genomic instability. Additionally, our study provides further support for 5-MC as a prominent carcinogenic component of smoky coal emissions. Further studies are needed to replicate our findings.
Assuntos
Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Feminino , Retroelementos/genética , Carvão Mineral/efeitos adversos , Carvão Mineral/análise , Variações do Número de Cópias de DNA/genética , China/epidemiologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Leucócitos , Poluição do Ar em Ambientes Fechados/análiseRESUMO
There is limited evidence regarding the exposure-effect relationship between lung-cancer risk and hexavalent chromium (Cr(VI)) or nickel. We estimated lung-cancer risks in relation to quantitative indices of occupational exposure to Cr(VI) and nickel and their interaction with smoking habits. We pooled 14 case-control studies from Europe and Canada, including 16 901 lung-cancer cases and 20 965 control subjects. A measurement-based job-exposure-matrix estimated job-year-region specific exposure levels to Cr(VI) and nickel, which were linked to the subjects' occupational histories. Odds ratios (OR) and associated 95% confidence intervals (CI) were calculated by unconditional logistic regression, adjusting for study, age group, smoking habits and exposure to other occupational lung carcinogens. Due to their high correlation, we refrained from mutually adjusting for Cr(VI) and nickel independently. In men, ORs for the highest quartile of cumulative exposure to CR(VI) were 1.32 (95% CI 1.19-1.47) and 1.29 (95% CI 1.15-1.45) in relation to nickel. Analogous results among women were: 1.04 (95% CI 0.48-2.24) and 1.29 (95% CI 0.60-2.86), respectively. In men, excess lung-cancer risks due to occupational Cr(VI) and nickel exposure were also observed in each stratum of never, former and current smokers. Joint effects of Cr(VI) and nickel with smoking were in general greater than additive, but not different from multiplicative. In summary, relatively low cumulative levels of occupational exposure to Cr(VI) and nickel were associated with increased ORs for lung cancer, particularly in men. However, we cannot rule out a combined classical measurement and Berkson-type of error structure, which may cause differential bias of risk estimates.
Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Masculino , Humanos , Feminino , Níquel/toxicidade , Níquel/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Cromo/toxicidade , Cromo/análise , Estudos de Casos e ControlesRESUMO
Metal exposure has been suggested as a possible environmental risk factor for Parkinson disease (PD). We searched the PubMed, EMBASE, and Cochrane databases to systematically review the literature on the relationship between metal exposure and PD risk and to examine the overall quality of each study and the exposure assessment method. A total of 83 case-control studies and 5 cohort studies published during the period 1963-July 2021 were included, of which 73 were graded as being of low or moderate overall quality. Investigators in 69 studies adopted self-reported exposure and biomonitoring after disease diagnosis for exposure assessment approaches. The meta-analyses showed that concentrations of copper and iron in serum and concentrations of zinc in either serum or plasma were lower, while concentrations of magnesium in CSF and zinc in hair were higher, among PD cases as compared with controls. Cumulative lead levels in bone were found to be associated with increased risk of PD. We did not find associations between other metals and PD. The current level of evidence for associations between metals and PD risk is limited, as biases from methodological limitations cannot be ruled out. High-quality studies assessing metal levels before disease onset are needed to improve our understanding of the role of metals in the etiology of PD.
Assuntos
Metais , Doença de Parkinson , Humanos , Estudos de Coortes , Cobre/efeitos adversos , Cobre/sangue , Chumbo/efeitos adversos , Chumbo/sangue , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Zinco/efeitos adversos , Zinco/sangue , Metais/efeitos adversos , Metais/sangueRESUMO
BACKGROUND: Depression and anxiety have long been hypothesized to be related to an increased cancer risk. Despite the great amount of research that has been conducted, findings are inconclusive. To provide a stronger basis for addressing the associations between depression, anxiety, and the incidence of various cancer types (overall, breast, lung, prostate, colorectal, alcohol-related, and smoking-related cancers), individual participant data (IPD) meta-analyses were performed within the Psychosocial Factors and Cancer Incidence (PSY-CA) consortium. METHODS: The PSY-CA consortium includes data from 18 cohorts with measures of depression or anxiety (up to N = 319,613; cancer incidences, 25,803; person-years of follow-up, 3,254,714). Both symptoms and a diagnosis of depression and anxiety were examined as predictors of future cancer risk. Two-stage IPD meta-analyses were run, first by using Cox regression models in each cohort (stage 1), and then by aggregating the results in random-effects meta-analyses (stage 2). RESULTS: No associations were found between depression or anxiety and overall, breast, prostate, colorectal, and alcohol-related cancers. Depression and anxiety (symptoms and diagnoses) were associated with the incidence of lung cancer and smoking-related cancers (hazard ratios [HRs], 1.06-1.60). However, these associations were substantially attenuated when additionally adjusting for known risk factors including smoking, alcohol use, and body mass index (HRs, 1.04-1.23). CONCLUSIONS: Depression and anxiety are not related to increased risk for most cancer outcomes, except for lung and smoking-related cancers. This study shows that key covariates are likely to explain the relationship between depression, anxiety, and lung and smoking-related cancers. PREREGISTRATION NUMBER: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=157677.
Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Masculino , Humanos , Depressão/complicações , Depressão/epidemiologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Fatores de Risco , Ansiedade/complicações , Ansiedade/epidemiologia , Neoplasias Colorretais/epidemiologiaRESUMO
Childhood exposure to endocrine-disrupting chemicals (EDCs), either alone or in mixtures, may affect metabolic outcomes, yet existing evidence remains inconclusive. In our study of 372 adolescents from the Flemish Environment and Health Study (FLEHS IV, 2017-2018), we measured 40 known and suspected EDCs and assessed metabolic outcomes, including body mass index z-score (zBMI), abdominal obesity (AO), total cholesterol (TC), and triglycerides (TG). We applied Bayesian kernel machine regression (BKMR) and Bayesian penalized horseshoe regression for variable selection and then built multivariate generalized propensity score (mvGPS) models to provide an overview of the effects of selected EDCs on metabolic outcomes. As a result, BKMR and horseshoe together identified five EDCs associated with zBMI, three with AO, three with TC, and five with TG. Through mvGPS analysis, monoiso-butyl phthalate (MIBP), polychlorinated biphenyl (PCB-170), and hexachlorobenzene (HCB) each showed an inverse association with zBMI, as did PCB-170 with AO. Copper (Cu) was associated with higher TC and TG, except in boys where it was linked to lower TG. Additionally, monoethyl phthalate (MEP) and monobenzyl phthalate (MBzP) were associated with higher TG. To conclude, our findings support the association between certain chemicals (Cu, MEP, and MBzP) and elevated lipid levels, aligning with prior studies. Further investigation is needed for sex-specific effects.
Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Ácidos Ftálicos , Adolescente , Criança , Feminino , Humanos , Masculino , Teorema de Bayes , Bélgica , Exposição AmbientalRESUMO
Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and untargeted metabolomics are increasingly used in exposome studies to study the interactions between nongenetic factors and the blood metabolome. To reliably and efficiently link detected compounds to exposures and health phenotypes in such studies, it is important to understand the variability in metabolome measures. We assessed the within- and between-subject variability of untargeted LC-HRMS measurements in 298 nonfasting human serum samples collected on two occasions from 157 subjects. Samples were collected ca. 107 (IQR: 34) days apart as part of the multicenter EXPOsOMICS Personal Exposure Monitoring study. In total, 4294 metabolic features were detected, and 184 unique compounds could be identified with high confidence. The median intraclass correlation coefficient (ICC) across all metabolic features was 0.51 (IQR: 0.29) and 0.64 (IQR: 0.25) for the 184 uniquely identified compounds. For this group, the median ICC marginally changed (0.63) when we included common confounders (age, sex, and body mass index) in the regression model. When grouping compounds by compound class, the ICC was largest among glycerophospholipids (median ICC 0.70) and steroids (0.67), and lowest for amino acids (0.61) and the O-acylcarnitine class (0.44). ICCs varied substantially within chemical classes. Our results suggest that the metabolome as measured with untargeted LC-HRMS is fairly stable (ICC > 0.5) over 100 days for more than half of the features monitored in our study, to reflect average levels across this time period. Variance across the metabolome will result in differential measurement error across the metabolome, which needs to be considered in the interpretation of metabolome results.
Assuntos
Metaboloma , Metabolômica , Humanos , Metabolômica/métodos , Espectrometria de Massas , Cromatografia Líquida/métodos , FenótipoRESUMO
OBJECTIVE: Women of reproductive age are exposed to ubiquitous chemicals such as phthalates, parabens, and per- and polyfluoroalkyl substances (PFAS), which have potential endocrine disrupting properties and might affect fertility. Our objective was to investigate associations between potential endocrine-disrupting chemicals (EDCs) and female fertility in two cohorts of women attending fertility clinics. METHODS: In a total population of 333 women in Sweden and Estonia, we studied the associations between chemicals and female fertility, evaluating ovarian sensitivity index (OSI) as an indicator of ovarian response, as well as clinical pregnancy and live birth from fresh and frozen embryo transfers. We measured 59 chemicals in follicular fluid samples and detected 3 phthalate metabolites, di-2-ethylhexyl phthalate (DEHP) metabolites, 1 paraben, and 6 PFAS in >90% of the women. Associations were evaluated using multivariable-adjusted linear or logistic regression, categorizing EDCs into quartiles of their distributions, as well as with Bayesian Kernel Machine Regression. RESULTS: We observed statistically significant lower OSI at higher concentrations of the sum of DEHP metabolites in the Swedish cohort (Q4 vs Q1, ß = -0.21, 95% CI: -0.38, -0.05) and methylparaben in the Estonian cohort (Q3 vs Q1, ß = -0.22, 95% CI: -0.44, -0.01). Signals of potential associations were also observed at higher concentrations of PFUnDA in both the combined population (Q2 vs. Q1, ß = -0.16, 95% CI -0.31, -0.02) and the Estonian population (Q2 vs. Q1, ß = -0.27, 95% CI -0.45, -0.08), and for PFOA in the Estonian population (Q4 vs. Q1, ß = -0.31, 95% CI -0.61, -0.01). Associations of chemicals with clinical pregnancy and live birth presented wide confidence intervals. CONCLUSIONS: Within a large chemical mixture, we observed significant inverse associations levels of DEHP metabolites and methylparaben, and possibly PFUnDA and PFOA, with OSI, suggesting that these chemicals may contribute to altered ovarian function and infertility in women.
Assuntos
Dietilexilftalato , Disruptores Endócrinos , Poluentes Ambientais , Fluorocarbonos , Ácidos Ftálicos , Gravidez , Feminino , Humanos , Estônia/epidemiologia , Suécia/epidemiologia , Teorema de Bayes , ReproduçãoRESUMO
Prenatal exposure to metabolism-disrupting chemicals (MDCs) has been linked to birth weight, but the molecular mechanisms remain largely unknown. In this study, we investigated gene expressions and biological pathways underlying the associations between MDCs and birth weight, using microarray transcriptomics, in a Belgian birth cohort. Whole cord blood measurements of dichlorodiphenyldichloroethylene (p,p'-DDE), polychlorinated biphenyls 153 (PCB-153), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and transcriptome profiling were conducted in 192 mother-child pairs. A workflow including a transcriptome-wide association study, pathway enrichment analysis with a meet-in-the-middle approach, and mediation analysis was performed to characterize the biological pathways and intermediate gene expressions of the MDC-birth weight relationship. Among 26,170 transcriptomic features, we successfully annotated five overlapping metabolism-related gene expressions associated with both an MDC and birth weight, comprising BCAT2, IVD, SLC25a16, HAS3, and MBOAT2. We found 11 overlapping pathways, and they are mostly related to genetic information processing. We found no evidence of any significant mediating effect. In conclusion, this exploratory study provides insights into transcriptome perturbations that may be involved in MDC-induced altered birth weight.
Assuntos
Poluentes Ambientais , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Peso ao Nascer/genética , Bélgica , Transcriptoma , Coorte de Nascimento , Sangue Fetal/química , Diclorodifenil Dicloroetileno , Exposição Materna/efeitos adversos , Poluentes Ambientais/análise , Autoantígenos/análise , Proteínas de Membrana Transportadoras/análiseRESUMO
BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. METHODS: A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3')-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman's rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. RESULTS: ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains ('farm to fork') was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman's ρâ>â0.7) between qPCR data and metagenomic data of pooled samples. CONCLUSIONS: qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure.
Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Bovinos , Galinhas , Estudos Transversais , Farmacorresistência Bacteriana , Fezes , Genes Bacterianos , Humanos , Gado , Carne , RNA Ribossômico 16S/genética , SuínosRESUMO
BACKGROUND: Several studies have confirmed associations between air pollution and overall mortality, but it is unclear to what extent these associations reflect causal relationships. Moreover, few studies to our knowledge have accounted for complex mixtures of air pollution. In this study, we evaluate the causal effects of a mixture of air pollutants on overall mortality in a large, prospective cohort of Dutch individuals. METHODS: We evaluated 86,882 individuals from the LIFEWORK study, assessing overall mortality between 2013 and 2017 through national registry linkage. We predicted outdoor concentration of five air pollutants (PM2.5, PM10, NO2, PM2.5 absorbance, and oxidative potential) with land-use regression. We used logistic regression and mixture modeling (weighted quantile sum and boosted regression tree models) to identify potential confounders, assess pollutants' relevance in the mixture-outcome association, and investigate interactions and nonlinearities. Based on these results, we built a multivariate generalized propensity score model to estimate the causal effects of pollutant mixtures. RESULTS: Regression model results were influenced by multicollinearity. Weighted quantile sum and boosted regression tree models indicated that all components contributed to a positive linear association with the outcome, with PM2.5 being the most relevant contributor. In the multivariate propensity score model, PM2.5 (OR=1.18, 95% CI: 1.08-1.29) and PM10 (OR=1.02, 95% CI: 0.91-1.14) were associated with increased odds of mortality per interquartile range increase. CONCLUSION: Using novel methods for causal inference and mixture modeling in a large prospective cohort, this study strengthened the causal interpretation of air pollution effects on overall mortality, emphasizing the primary role of PM2.5 within the pollutant mixture.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Estudos ProspectivosRESUMO
OBJECTIVES: Regulators frequently deviate from health-based recommendations when setting occupational exposure limits, but the impact on workers' health is rarely made explicit. We present a quantitative evaluation of the expected impact of recently proposed regulatory limits for occupational diesel engine exhaust (DEE) exposure on the excess burden of lung cancer (LC) in Europe. METHODS: We used a lifetable approach, basing our analyses on the DEE exposure distribution in a large general population study, as well as the 5% prevalence used in earlier DEE burden calculations. We evaluated the effects of intervention on DEE exposures according to a health based limit (1 ug/m3 of elemental carbon (EC)) and both Dutch (10 ug/m3) and European (50 ug/m3) proposed regulatory limit values. Results were expressed as individual excess lifetime risks (ELR), total excess number of cases and population attributable fraction of LC. RESULTS: The ELR for the EU working population was estimated to be 341/10 000 workers based on our empirical exposure distribution and 46/10 000 workers based on the 5% prevalence. Implementing the proposed health based DEE limit would reduce the ELR by approximately 93%, while the proposed regulatory limits of 10 and 50 ug/m3 EC would reduce the ELR by 51% and 21%, respectively. DISCUSSION: Although the proposed regulatory limits are expected to reduce the number of DEE related LC deaths, the residual ELRs are still significantly higher than the targets used for deriving health-based risk limits. The number of additional cases of LC in Europe due to DEE exposure, therefore, remains significant.
Assuntos
Poluentes Ocupacionais do Ar , Neoplasias Pulmonares , Exposição Ocupacional , Carbono/análise , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Emissões de Veículos/análiseRESUMO
OBJECTIVES: Benzene is a known haematoxin and leukemogen that can cause benzene poisoning (BP), that is, a persistent reduction in white cell counts that is strongly associated with increased risk of lymphohaematopoietic malignancies. Data are needed on the exposure-response, particularly at low doses and susceptible populations for clinical and regulatory purposes. METHODS: In a case-cohort study among 110 631 Chinese workers first employed 1949-1987 and followed up during 1972-1999, we evaluated BP risk according to benzene exposure level and investigated risk modification by subject (sex, attained age) and exposure-related factors (latency, exposure windows, age at first benzene exposure, coexposure to toluene) using excess relative risk and excess absolute risk models. RESULTS: There were 538 BP cases and 909 benzene-exposed referents. The exposure metric with best model fit was cumulative benzene exposure during a 5-year risk window, followed by a 9-month lag period before BP diagnosis. Estimated excess absolute risk of BP at age 60 increased from 0.5% for subjects in the lowest benzene exposure category (>0 to 10 ppm-years) to 5.0% for those in the highest category (>100 ppm-years) compared with unexposed subjects. Increased risks were apparent at low cumulative exposure levels and for workers who were first exposed at <30 years of age. CONCLUSIONS: Our data show a clear association between benzene exposure and BP, beginning at low cumulative benzene exposure levels with no threshold, and with higher risks for workers exposed at younger ages. These findings are important because BP has been linked to a strongly increased development of lymphohaematopoietic malignancies.