Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794931

RESUMO

BACKGROUND: Understanding the etiology of recurrent tuberculosis (rTB) is important for effective TB control. Prior to the advent of whole genome sequencing (WGS), attributing rTB to relapse or reinfection using genetic information was complicated by the limited resolution of conventional genotyping methods. METHODS: We applied a systematic method of evaluating whole genome single nucleotide polymorphism (wgSNP) distances and results of phylogenetic analyses to characterize the etiology of rTB in American Indian and Alaska Native (AIAN) persons in Alaska during 2008-2020. We contextualized our findings through descriptive analyses of surveillance data and results of a literature search for investigations that characterized rTB etiology using WGS. RESULTS: The percentage of TB cases in AIAN persons in Alaska classified as recurrent episodes (11.8%) was three times the national percentage (3.9%). Of 38 recurrent episodes included in genetic analyses, we attributed 25 (65.8%) to reinfection based on wgSNP distances and phylogenetic analyses; this proportion was the highest among 16 published point estimates identified through the literature search. By comparison, we attributed 11 of 38 (28.9%) and 6 of 38 (15.8%) recurrent episodes to reinfection based on wgSNP distances alone and on conventional genotyping methods, respectively. CONCLUSIONS: WGS and attribution criteria involving genetic distances and patterns of relatedness can provide an effective means of elucidating rTB etiology. Our findings indicate that rTB occurs at high proportions among AIAN persons in Alaska and is frequently attributable to reinfection, reinforcing the importance of active surveillance and control measures to limit the spread of TB disease in Alaskan AIAN communities.

2.
N Engl J Med ; 381(26): 2569-2580, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31881145

RESUMO

Rapid advances in DNA sequencing technology ("next-generation sequencing") have inspired optimism about the potential of human genomics for "precision medicine." Meanwhile, pathogen genomics is already delivering "precision public health" through more effective investigations of outbreaks of foodborne illnesses, better-targeted tuberculosis control, and more timely and granular influenza surveillance to inform the selection of vaccine strains. In this article, we describe how public health agencies have been adopting pathogen genomics to improve their effectiveness in almost all domains of infectious disease. This momentum is likely to continue, given the ongoing development in sequencing and sequencing-related technologies.


Assuntos
Surtos de Doenças , Doenças Transmitidas por Alimentos/epidemiologia , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Influenza Humana/epidemiologia , Saúde Pública , Tuberculose/epidemiologia , Animais , Bactérias/genética , Doenças Transmitidas por Alimentos/diagnóstico , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/parasitologia , Humanos , Influenza Humana/diagnóstico , Influenza Humana/microbiologia , Metagenômica , Parasitos/genética , Tuberculose/diagnóstico , Vírus/genética
3.
Clin Microbiol Rev ; 33(1)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31666281

RESUMO

Tuberculosis (TB) is the leading killer among all infectious diseases worldwide despite extensive use of the Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine. A safer and more effective vaccine than BCG is urgently required. More than a dozen TB vaccine candidates are under active evaluation in clinical trials aimed to prevent infection, disease, and recurrence. After decades of extensive research, renewed promise of an effective vaccine against this ancient airborne disease has recently emerged. In two innovative phase 2b vaccine clinical trials, one for the prevention of Mycobacterium tuberculosis infection in healthy adolescents and another for the prevention of TB disease in M. tuberculosis-infected adults, efficacy signals were observed. These breakthroughs, based on the greatly expanded knowledge of the M. tuberculosis infection spectrum, immunology of TB, and vaccine platforms, have reinvigorated the TB vaccine field. Here, we review our current understanding of natural immunity to TB, limitations in BCG immunity that are guiding vaccinologists to design novel TB vaccine candidates and concepts, and the desired attributes of a modern TB vaccine. We provide an overview of the progress of TB vaccine candidates in clinical evaluation, perspectives on the challenges faced by current vaccine concepts, and potential avenues to build on recent successes and accelerate the TB vaccine research-and-development trajectory.


Assuntos
Mycobacterium tuberculosis/imunologia , Pesquisa , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Mycobacterium bovis/imunologia , Avaliação de Resultados em Cuidados de Saúde , Vacinas contra a Tuberculose/administração & dosagem
4.
J Infect Dis ; 221(12): 2072-2082, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32002554

RESUMO

BACKGROUND: Mutations in the genes inhA, katG, and rpoB confer resistance to anti-tuberculosis (TB) drugs isoniazid and rifampin. We questioned whether specific mutations in these genes were associated with different clinical and microbiological characteristics. METHODS: In a multicountry prospective cohort study of multidrug-resistant TB, we identified inhA, katG, and rpoB mutations in sputum isolates using the Hain MTBDRplus line probe assay. For specific mutations, we performed bivariate analysis to determine relative risk of baseline or acquired resistance to other TB drugs. We compared time to sputum culture conversion (TSCC) using Kaplan-Meier curves and stratified Cox regression. RESULTS: In total, 447 participants enrolled from January 2005 to December 2008 from 7 countries were included. Relative to rpoB S531L, isolates with rpoB D516V had less cross-resistance to rifabutin, increased baseline resistance to other drugs, and increased acquired fluoroquinolone resistance. Relative to mutation of katG only, mutation of inhA promoter and katG was associated with baseline extensively drug resistant (XDR) TB, increased acquired fluoroquinolone resistance, and slower TSCC (125.5 vs 89.0 days). CONCLUSIONS: Specific mutations in inhA and katG are associated with differences in resistance to other drugs and TSCC. Molecular testing may make it possible to tailor treatment and assess additional drug resistance risk according to specific mutation profile.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Catalase/genética , Análise Mutacional de DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , RNA Polimerases Dirigidas por DNA/genética , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Oxirredutases/genética , Regiões Promotoras Genéticas/genética , Estudos Prospectivos , Rifampina/farmacologia , Rifampina/uso terapêutico , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-33106264

RESUMO

Fluoroquinolones (FQ) are crucial components of multidrug-resistant tuberculosis (MDR TB) treatment. Differing levels of resistance are associated with specific mutations within the quinolone-resistance-determining region (QRDR) of gyrA We sequenced the QRDR from serial isolates of MDR TB patients in the Preserving Effective TB Treatment Study (PETTS) with baseline FQ resistance (FQR) or acquired FQ resistance (FQACQR) using an Ion Torrent Personal Genome Machine (PGM) to a depth of 10,000× and reported single nucleotide polymorphisms in ≥1% of reads. FQR isolates harbored 15 distinct alleles with 1.3 (maximum = 6) on average per isolate. Eighteen alleles were identified in FQACQR isolates with an average of 1.6 (maximum = 9) per isolate. Isolates from 78% of FQACQR individuals had mutant alleles identified within 6 months of treatment initiation. Asp94Gly was the predominant allele in the initial FQ-resistant isolates followed by Ala90Val. Seventy-seven percent (36/47) of FQACQR group patients had isolates with FQ resistance alleles prior to changes to the FQ component of their treatment. Unlike the individuals treated initially with other FQs, none of the 21 individuals treated initially with levofloxacin developed genotypic or phenotypic FQ resistance, although country of residence was likely a contributing factor since 69% of these individuals were from a single country. Initial detection of phenotypic resistance and genotypic resistance occurred simultaneously for most; however, phenotypic resistance occurred earlier in isolates harboring mixtures of alleles of very low abundance (<1% of reads), whereas genotypic resistance often occurred earlier for alleles associated with low-level resistance. Understanding factors influencing acquisition and evolution of FQ resistance could reveal strategies for improved treatment success.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , DNA Girase/genética , Farmacorresistência Bacteriana Múltipla/genética , Fluoroquinolonas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
6.
Biochemistry ; 57(5): 781-790, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29345920

RESUMO

Bacterial nucleoid-associated proteins (NAPs) are critical to genome integrity and chromosome maintenance. Post-translational modifications of bacterial NAPs appear to function similarly to their better studied mammalian counterparts. The histone-like NAP HupB from Mycobacterium tuberculosis (Mtb) was previously observed to be acetylated by the acetyltransferase Eis, leading to genome reorganization. We report biochemical and structural aspects of acetylation of HupB by Eis. We also found that the SirT-family NAD+-dependent deacetylase Rv1151c from Mtb deacetylated HupB in vitro and characterized the deacetylation kinetics. We propose that activities of Eis and Rv1151c could regulate the acetylation status of HupB to remodel the mycobacterial chromosome in response to environmental changes.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Mycobacterium tuberculosis/metabolismo , Acetilação , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Histona Desacetilases/genética , Histonas/genética , Cinética , Lisina/química , Modelos Moleculares , Mycobacterium tuberculosis/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
7.
Emerg Infect Dis ; 24(3): 573-575, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29460749

RESUMO

We previously reported use of genotype surveillance data to predict outbreaks among incident tuberculosis clusters. We propose a method to detect possible outbreaks among endemic tuberculosis clusters. We detected 15 possible outbreaks, of which 10 had epidemiologic data or whole-genome sequencing results. Eight outbreaks were corroborated.


Assuntos
Surtos de Doenças , Modelos Estatísticos , Mycobacterium tuberculosis , Tuberculose/epidemiologia , Análise por Conglomerados , Genoma Bacteriano , Genômica/métodos , Genótipo , Humanos , Incidência , Epidemiologia Molecular , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Prevalência , Tuberculose/diagnóstico , Tuberculose/microbiologia , Estados Unidos
8.
Artigo em Inglês | MEDLINE | ID: mdl-29084743

RESUMO

Pyrazinamide (PZA) is a standard component of first-line treatment regimens for Mycobacterium tuberculosis and is included in treatment regimens for drug-resistant M. tuberculosis whenever possible. Therefore, it is imperative that susceptibility to PZA be assessed reliably prior to the initiation of therapy. Currently available growth-based PZA susceptibility tests are time-consuming, and results can be inconsistent. Molecular tests have been developed for most first-line antituberculosis drugs; however, a commercial molecular test is not yet available for rapid detection of PZA resistance. Recently, a line probe assay, the Nipro Genoscholar PZA-TB II assay, was developed for the detection of mutations within the pncA gene, including the promoter region, that are likely to lead to PZA resistance. The sensitivity and specificity of this assay were evaluated by two independent laboratories, using a combined total of 249 strains with mutations in pncA or its promoter and 21 strains with wild-type pncA Overall, the assay showed good sensitivity (93.2% [95% confidence interval, 89.3 to 95.8%]) and moderate specificity (91.2% [95% confidence interval, 77.0 to 97.0%]) for the identification of M. tuberculosis strains predicted to be resistant to PZA on the basis of the presence of mutations (excluding known PZA-susceptible mutations) in the pncA coding region or promoter. The assay shows promise for the molecular prediction of PZA resistance.


Assuntos
Proteínas de Bactérias/genética , Bioensaio/métodos , Mutação/genética , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Pirazinamida/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30082293

RESUMO

Resistance to the first-line antituberculosis (TB) drug isoniazid (INH) is widespread, and the mechanism of resistance is unknown in approximately 15% of INH-resistant (INH-R) strains. To improve molecular detection of INH-R TB, we used whole-genome sequencing (WGS) to analyze 52 phenotypically INH-R Mycobacterium tuberculosis complex (MTBC) clinical isolates that lacked the common katG S315T or inhA promoter mutations. Approximately 94% (49/52) of strains had mutations at known INH-associated loci that were likely to confer INH resistance. All such mutations would be detectable by sequencing more DNA adjacent to existing target regions. Use of WGS minimized the chances of missing infrequent INH resistance mutations outside commonly targeted hotspots. We used recombineering to generate 12 observed clinical katG mutations in the pansusceptible H37Rv reference strain and determined their impact on INH resistance. Our functional genetic experiments have confirmed the role of seven suspected INH resistance mutations and discovered five novel INH resistance mutations. All recombineered katG mutations conferred resistance to INH at a MIC of ≥0.25 µg/ml and should be added to the list of INH resistance determinants targeted by molecular diagnostic assays. We conclude that WGS is a useful tool for detecting uncommon INH resistance mutations that would otherwise be missed by current targeted molecular testing methods and suggest that its use (or use of expanded conventional or next-generation-based targeted sequencing) may provide earlier diagnosis of INH-R TB.


Assuntos
Antituberculosos/farmacologia , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Mutação/genética , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/genética
10.
Antimicrob Agents Chemother ; 59(1): 444-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385119

RESUMO

As the prevalence of multidrug-resistant and extensively drug-resistant tuberculosis strains continues to rise, so does the need to develop accurate and rapid molecular tests to complement time-consuming growth-based drug susceptibility testing. Performance of molecular methods relies on the association of specific mutations with phenotypic drug resistance and while considerable progress has been made for resistance detection of first-line antituberculosis drugs, rapid detection of resistance for second-line drugs lags behind. The rrs A1401G allele is considered a strong predictor of cross-resistance between the three second-line injectable drugs, capreomycin (CAP), kanamycin, and amikacin. However, discordance is often observed between the rrs A1401G mutation and CAP resistance, with up to 40% of rrs A1401G mutants being classified as CAP susceptible. We measured the MICs to CAP in 53 clinical isolates harboring the rrs A1401G mutation and found that the CAP MICs ranged from 8 µg/ml to 40 µg/ml. These results were drastically different from engineered A1401G mutants generated in isogenic Mycobacterium tuberculosis, which exclusively exhibited high-level CAP MICs of 40 µg/ml. These data support the results of prior studies, which suggest that the critical concentration of CAP (10 µg/ml) used to determine resistance by indirect agar proportion may be too high to detect all CAP-resistant strains and suggest that a larger percentage of resistant isolates could be identified by lowering the critical concentration. These data also suggest that differences in resistance levels among clinical isolates are possibly due to second site or compensatory mutations located elsewhere in the genome.


Assuntos
Antibióticos Antituberculose/uso terapêutico , Capreomicina/uso terapêutico , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/genética , Amicacina/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Canamicina/uso terapêutico , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
11.
Antimicrob Agents Chemother ; 59(9): 5427-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26100699

RESUMO

The newer fluoroquinolones moxifloxacin (MXF) and levofloxacin (LVX) are becoming more common components of tuberculosis (TB) treatment regimens. However, the critical concentrations for testing susceptibility of Mycobacterium tuberculosis to MXF and LVX are not yet well established. Additionally, the degree of cross-resistance between ofloxacin (OFX) and these newer fluoroquinolones has not been thoroughly investigated. In this study, the MICs for MXF and LVX and susceptibility to the critical concentration of OFX were determined using the agar proportion method for 133 isolates of M. tuberculosis. Most isolates resistant to OFX had LVX MICs of >1 µg/ml and MXF MICs of >0.5 µg/ml. The presence of mutations within the gyrA quinolone resistance-determining regions (QRDR) correlated well with increased MICs, and the level of LVX and MXF resistance was dependent on the specific gyrA mutation present. Substitutions Ala90Val, Asp94Ala, and Asp94Tyr resulted in low-level MXF resistance (MICs were >0.5 but ≤2 µg/ml), while other mutations led to MXF MICs of >2 µg/ml. Based on these results, a critical concentration of 1 µg/ml is suggested for LVX and 0.5 µg/ml for MXF drug susceptibility testing by agar proportion with reflex testing for MXF at 2 µg/ml.


Assuntos
Antituberculosos/farmacologia , Fluoroquinolonas/farmacologia , Levofloxacino/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , DNA Girase/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Moxifloxacina , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética
13.
PLoS Pathog ; 9(10): e1003705, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130497

RESUMO

Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.


Assuntos
Adesinas Bacterianas/imunologia , Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Feminino , Glicosilação , Humanos , Masculino , Manose/genética , Manose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Linfócitos T/metabolismo , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/metabolismo , Vacinas contra a Tuberculose/genética
14.
Can J Microbiol ; 61(12): 938-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26492080

RESUMO

Despite the interactions known to occur between various lower respiratory tract pathogens and alveolar epithelial cells (AECs), few reports examine factors influencing the interplay between Mycobacterium tuberculosis bacilli and AECs during infection. Importantly, in vitro studies have demonstrated that the M. tuberculosis hbha and esxA gene products HBHA and ESAT6 directly or indirectly influence AEC survival. In this report, we identify Rv3351c as another M. tuberculosis gene that impacts the fate of both the pathogen and AEC host. Intracellular replication of an Rv3351c mutant in the human AEC type II pneumocyte cell line A549 was markedly reduced relative to the complemented mutant and parent strain. Deletion of Rv3351c diminished the release of lactate dehydrogenase and decreased uptake of trypan blue vital stain by host cells infected with M. tuberculosis bacilli, suggesting attenuated cytotoxic effects. Interestingly, an isogenic hbha mutant displayed reductions in AEC killing similar to those observed for the Rv3351c mutant. This opens the possibility that multiple M. tuberculosis gene products interact with AECs. We also observed that Rv3351c aids intracellular replication and survival of M. tuberculosis in macrophages. This places Rv3351c in the same standing as HBHA and ESAT6, which are important factors in AECs and macrophages. Defining the mechanism(s) by which Rv3351c functions to aid pathogen survival within the host may lead to new drug or vaccine targets.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Alvéolos Pulmonares/microbiologia , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/citologia , Humanos , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Alvéolos Pulmonares/citologia , Tuberculose/fisiopatologia
15.
JAC Antimicrob Resist ; 6(2): dlae037, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38500518

RESUMO

Background: Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis; however, antibiotic susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily driven by genetic variation in pncA, encoding an enzyme that converts pyrazinamide into its active form. Methods: We curated a dataset of 664 non-redundant, missense amino acid mutations in PncA with associated high-confidence phenotypes from published studies and then trained three different machine-learning models to predict pyrazinamide resistance. All models had access to a range of protein structural-, chemical- and sequence-based features. Results: The best model, a gradient-boosted decision tree, achieved a sensitivity of 80.2% and a specificity of 76.9% on the hold-out test dataset. The clinical performance of the models was then estimated by predicting the binary pyrazinamide resistance phenotype of 4027 samples harbouring 367 unique missense mutations in pncA derived from 24 231 clinical isolates. Conclusions: This work demonstrates how machine learning can enhance the sensitivity/specificity of pyrazinamide resistance prediction in genetics-based clinical microbiology workflows, highlights novel mutations for future biochemical investigation, and is a proof of concept for using this approach in other drugs.

16.
Antimicrob Agents Chemother ; 57(4): 1857-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23380727

RESUMO

Since the discovery of streptomycin's bactericidal activity against Mycobacterium tuberculosis, aminoglycosides have been utilized to treat tuberculosis (TB). Today, the aminoglycosides kanamycin and amikacin are used to treat multidrug-resistant (MDR) TB, and resistance to any of the second-line injectable antibiotics, including kanamycin, amikacin, or capreomycin, is a defining characteristic of extensively drug-resistant (XDR) TB. Resistance to kanamycin and streptomycin is thought to be due to the acquisition of unlinked chromosomal mutations. However, we identified eight independent mutations in the 5' untranslated region of the transcriptional activator whiB7 that confer low-level resistance to both aminoglycosides. The mutations lead to 23- to 145-fold increases in whiB7 transcripts and subsequent increased expression of both eis (Rv2416c) and tap (Rv1258c). Increased expression of eis confers kanamycin resistance in these mutants, while increased expression of tap, which encodes an efflux pump, is a previously uncharacterized mechanism of low-level streptomycin resistance. Additionally, high-level resistance to streptomycin arose at a much higher frequency in whiB7 mutants than in a wild-type (WT) strain. Although whiB7 is typically associated with intrinsic antibiotic resistance in M. tuberculosis, these data suggest that mutations in an uncharacterized regulatory region of whiB7 contribute to cross-resistance against clinically used second-line antibiotics. As drug resistance continues to develop and spread, understanding the mechanisms and molecular basis of antibiotic resistance is critical for the development of rapid molecular tests to diagnose drug-resistant TB strains and ultimately for designing regimens to treat drug-resistant cases of TB.


Assuntos
Regiões 5' não Traduzidas/genética , Aminoglicosídeos/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/genética , Immunoblotting , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 106(47): 20004-9, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19906990

RESUMO

The emergence of multidrug-resistant (MDR) tuberculosis (TB) highlights the urgent need to understand the mechanisms of resistance to the drugs used to treat this disease. The aminoglycosides kanamycin and amikacin are important bactericidal drugs used to treat MDR TB, and resistance to one or both of these drugs is a defining characteristic of extensively drug-resistant TB. We identified mutations in the -10 and -35 promoter region of the eis gene, which encodes a previously uncharacterized aminoglycoside acetyltransferase. These mutations led to a 20-180-fold increase in the amount of eis leaderless mRNA transcript, with a corresponding increase in protein expression. Importantly, these promoter mutations conferred resistance to kanamycin [5 microg/mL < minimum inhibitory concentration (MIC)

Assuntos
Antibacterianos , Antígenos de Bactérias , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla/fisiologia , Canamicina , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Acetiltransferases/farmacologia , Acetiltransferases/uso terapêutico , Amicacina/farmacologia , Amicacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Canamicina/farmacologia , Canamicina/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/fisiologia , Regiões Promotoras Genéticas , Transcrição Gênica , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/enzimologia , Tuberculose Resistente a Múltiplos Medicamentos/genética
18.
Tuberculosis (Edinb) ; 136: 102232, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35969928

RESUMO

OBJECTIVE: This study describes characteristics of large tuberculosis (TB) outbreaks in the United States detected using novel molecular surveillance methods during 2014-2016 and followed for 2 years through 2018. METHODS: We developed 4 genotype-based detection algorithms to identify large TB outbreaks of ≥10 cases related by recent transmission during a 3-year period. We used whole-genome sequencing and epidemiologic data to assess evidence of recent transmission among cases. RESULTS: There were 24 large outbreaks involving 518 cases; patients were primarily U.S.-born (85.1%) racial/ethnic minorities (84.1%). Compared with all other TB patients, patients associated with large outbreaks were more likely to report substance use, homelessness, and having been diagnosed while incarcerated. Most large outbreaks primarily occurred within residences among families and nonfamilial social contacts. A source case with a prolonged infectious period and difficulties in eliciting contacts were commonly reported contributors to transmission. CONCLUSION: Large outbreak surveillance can inform targeted interventions to decrease outbreak-associated TB morbidity.


Assuntos
Pessoas Mal Alojadas , Mycobacterium tuberculosis , Tuberculose , Surtos de Doenças , Genótipo , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Estados Unidos/epidemiologia
19.
Eur J Med Chem ; 242: 114698, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037791

RESUMO

A clinically significant mechanism of tuberculosis resistance to the aminoglycoside kanamycin (KAN) is its acetylation catalyzed by upregulated Mycobacterium tuberculosis (Mtb) acetyltransferase Eis. In search for inhibitors of Eis, we discovered an inhibitor with a substituted benzyloxy-benzylamine scaffold. A structure-activity relationship study of 38 compounds in this structural family yielded highly potent (IC50 ∼ 1 µM) Eis inhibitors, which did not inhibit other acetyltransferases. Crystal structures of Eis in complexes with three of the inhibitors showed that the inhibitors were bound in the aminoglycoside binding site of Eis, consistent with the competitive mode of inhibition, as established by kinetics measurements. When tested in Mtb cultures, two inhibitors (47 and 55) completely abolished resistance to KAN of the highly KAN-resistant strain Mtb mc2 6230 K204, likely due to Eis inhibition as a major mechanism. Thirteen of the compounds were toxic even in the absence of KAN to Mtb and other mycobacteria, but not to non-mycobacteria or to mammalian cells. This, yet unidentified mechanism of toxicity, distinct from Eis inhibition, will merit future studies along with further development of these molecules as anti-mycobacterial agents.


Assuntos
Acetiltransferases , Mycobacterium tuberculosis , Acetiltransferases/química , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antituberculosos/química , Proteínas de Bactérias , Benzilaminas/farmacologia , Canamicina/química , Canamicina/farmacologia , Mamíferos/metabolismo , Mycobacterium tuberculosis/metabolismo
20.
Antimicrob Agents Chemother ; 55(5): 2032-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21300839

RESUMO

The emergence of multi- and extensively drug-resistant tuberculosis is a significant impediment to the control of this disease because treatment becomes more complex and costly. Reliable and timely drug susceptibility testing is critical to ensure that patients receive effective treatment and become noninfectious. Molecular methods can provide accurate and rapid drug susceptibility results. We used DNA sequencing to detect resistance to the first-line antituberculosis drugs isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) and the second-line drugs amikacin (AMK), capreomycin (CAP), kanamycin (KAN), ciprofloxacin (CIP), and ofloxacin (OFX). Nine loci were sequenced: rpoB (for resistance to RIF), katG and inhA (INH), pncA (PZA), embB (EMB), gyrA (CIP and OFX), and rrs, eis, and tlyA (KAN, AMK, and CAP). A total of 314 clinical Mycobacterium tuberculosis complex isolates representing a variety of antibiotic resistance patterns, genotypes, and geographical origins were analyzed. The molecular data were compared to the phenotypic data and the accuracy values were calculated. Sensitivity and specificity values for the first-line drug loci were 97.1% and 93.6% for rpoB, 85.4% and 100% for katG, 16.5% and 100% for inhA, 90.6% and 100% for katG and inhA together, 84.6% and 85.8% for pncA, and 78.6% and 93.1% for embB. The values for the second-line drugs were also calculated. The size and scope of this study, in numbers of loci and isolates examined, and the phenotypic diversity of those isolates support the use of DNA sequencing to detect drug resistance in the M. tuberculosis complex. Further, the results can be used to design diagnostic tests utilizing other mutation detection technologies.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Amicacina/farmacologia , Capreomicina/farmacologia , Ciprofloxacina/farmacologia , Etambutol/farmacologia , Isoniazida/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Ofloxacino/farmacologia , Pirazinamida/farmacologia , Rifampina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA