Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Hyg Environ Health ; 245: 114022, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35987164

RESUMO

OBJECTIVES: In the Netherlands, during the first phase of the COVID-19 epidemic, the hotspot of COVID-19 overlapped with the country's main livestock area, while in subsequent phases this distinct spatial pattern disappeared. Previous studies show that living near livestock farms influence human respiratory health and immunological responses. This study aimed to explore whether proximity to livestock was associated with SARS-CoV-2 infection. METHODS: The study population was the population of the Netherlands excluding the very strongly urbanised areas and border areas, on January 1, 2019 (12, 628, 244 individuals). The cases are the individuals reported with a laboratory-confirmed positive SARS-CoV-2 test with onset before January 1, 2022 (2, 223, 692 individuals). For each individual, we calculated distance to nearest livestock farm (cattle, goat, sheep, pig, poultry, horse, rabbit, mink). The associations between residential (6-digit postal-code) distance to the nearest livestock farm and individuals' SARS-CoV-2 status was studied with multilevel logistic regression models. Models were adjusted for individuals' age categories, the social status of the postal code area, particulate matter (PM10)- and nitrogen dioxide (NO2)-concentrations. We analysed data for the entire period and population as well as separately for eight time periods (Jan-Mar, Apr-Jun, Jul-Sep and Oct-Dec in 2020 and 2021), four geographic areas of the Netherlands (north, east, west and south), and for five age categories (0-14, 15-24, 25-44, 45-64 and > 65 years). RESULTS: Over the period 2020-2021, individuals' SARS-CoV-2 status was associated with living closer to livestock farms. This association increased from an Odds Ratio (OR) of 1.01 (95% Confidence Interval [CI] 1.01-1.02) for patients living at a distance of 751-1000 m to a farm to an OR of 1.04 (95% CI 1.04-1.04), 1.07 (95% CI 1.06-1.07) and 1.11 (95% CI 1.10-1.12) for patients living in the more proximate 501-750 m, 251-500m and 0-250 m zones around farms, all relative to patients living further than 1000 m around farms. This association was observed in three out of four quarters of the year in both 2020 and 2021, and in all studied geographic areas and age groups. CONCLUSIONS: In this exploratory study with individual SARS-CoV-2 notification data and high-resolution spatial data associations were found between living near livestock farms and individuals' SARS-CoV-2 status in the Netherlands. Verification of the results in other countries is warranted, as well as investigations into possible underlying exposures and mechanisms.


Assuntos
COVID-19 , Gado , Idoso , Animais , COVID-19/epidemiologia , Bovinos , Fazendas , Cavalos , Humanos , Países Baixos/epidemiologia , Coelhos , SARS-CoV-2 , Ovinos , Suínos
2.
Int J Hyg Environ Health ; 231: 113651, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129168

RESUMO

OBJECTIVES: The aim of this study is to assess whether medication use for obstructive airway diseases is associated with environmental exposure to livestock farms. Previous studies in the Netherlands at a regional level suggested that asthma and chronic obstructive pulmonary disease (COPD) are less prevalent among persons living near livestock farms. METHODS: A nationwide population-based cross-sectional study was conducted among 7,735,491 persons, with data on the dispensing of drugs for obstructive airway diseases in the Netherlands in 2016. Exposure was based on distances between home addresses and farms and on modelled atmospheric particulate matter (PM10) concentrations from livestock farms. Data were analysed for different regions by logistic regression analyses and adjusted for several individual-level variables, as well as modelled PM10 concentration of non-farm-related air pollution. Results for individual regions were subsequently pooled in meta-analyses. RESULTS: The probability of medication for asthma or COPD being dispensed to adults and children was lower with decreasing distance of their homes to livestock farms, particularly cattle and poultry farms. Increased concentrations of PM10 from cattle were associated with less dispensing of medications for asthma or COPD, as well (meta-analysis OR for 10th-90th percentile increase in concentration of PM10 from cattle farms, 95%CI: 0.92, 0.86-0.97 for adults). However, increased concentrations of PM10 from non-farm sources were positively associated (meta-analysis OR for 10th-90th percentile increase in PM10-concentration, 95%CI: 1.29, 1.09-1.52 for adults). CONCLUSIONS: The results show that the probability of dispensing medication for asthma or COPD is inversely associated with proximity to livestock farms and modelled exposure to livestock-related PM10 in multiple regions within the Netherlands. This finding implies a notable prevented risk: under the assumption of absence of livestock farms in the Netherlands, an estimated 2%-5% more persons (an increase in tens of thousands) in rural areas would receive asthma or COPD medication.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Animais , Bovinos , Estudos Transversais , Exposição Ambiental , Fazendas , Gado , Material Particulado/análise , Probabilidade
3.
Sci Total Environ ; 737: 139702, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531510

RESUMO

Observed multiple adverse effects of livestock production have led to increasing calls for more sustainable livestock production. Quantitative analysis of adverse effects, which can guide public debate and policy development in this area, is limited and generally scattered across environmental, human health, and other science domains. The aim of this study was to bring together and, where possible, quantify and aggregate the effects of national-scale livestock production on 17 impact categories, ranging from impacts of particulate matter, emerging infectious diseases and odor annoyance to airborne nitrogen deposition on terrestrial nature areas and greenhouse gas emissions. Effects were estimated and scaled to total Dutch livestock production, with system boundaries including feed production, manure management and transport, but excluding slaughtering, retail and consumption. Effects were expressed using eight indicators that directly express Impact in the sense of the Drivers-Pressures-State-Impact-Response framework, while the remaining 14 express Pressures or States. Results show that livestock production may contribute both positively and negatively to human health with a human disease burden (expressed in disability-adjusted life years) of up to 4% for three different health effects: those related to particulate matter, zoonoses, and occupational accidents. The contribution to environmental impact ranges from 2% for consumptive water use in the Netherlands to 95% for phosphorus transfer to soils, and extends beyond Dutch borders. While some aggregation across impact categories was possible, notably for burden of disease estimates, further aggregation of disparate indicators would require normative value judgement. Despite difficulty of aggregation, the assessment shows that impacts receive a different contribution of different animal sectors. While some of our results are country-specific, the overall approach is generic and can be adapted and tuned according to specific contexts and information needs in other regions, to allow informed decision making across a broad range of impact categories.


Assuntos
Gado , Esterco , Animais , Meio Ambiente , Humanos , Países Baixos , Solo
4.
PLoS One ; 14(10): e0223601, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31609989

RESUMO

In the Netherlands, an association was found between the prevalence of pneumonia and living near goat and poultry farms in 2007-2013. This association then led to regulatory decisions to restrict the building of new goat farms and to reduce emissions of poultry farms. Confirmation of these results, however, is required because the period of previous analyses overlapped a Q-fever epidemic in 2007-2010. To confirm the association, we performed a population-based study during 2014-2016 based on general practitioner (GP) data. Electronic medical records of 90,183 persons were used to analyze the association between pneumonia and the population living in the proximity (within 500-2000 m distance) of goat and poultry farms. Data were analyzed with three types of logistic regression (with and without GP practice as a random intercept and with stratified analyses per GP practice) and a kernel model to discern the influence of different statistical methods on the outcomes. In all regression analyses involving adults, a statistically significant association between pneumonia and residence within 500 meters of goat farms was found (odds ratio [OR] range over all analyses types: 1.33-1.60), with a decreasing OR for increasing distances. In kernel analyses (including all ages), a population-attributable risk between 6.0 and 7.8% was found for a distance of 2000 meters in 2014-2016. The associations were consistent across all years and robust for mutual adjustment for proximity to other animals and for several other sensitivity analyses. However, associations with proximity to poultry farms are not supported by the present study. As the causes of the elevated pneumonia incidence in persons living close to goat farms remain unknown, further research into potential mechanisms is required for adequate prevention.


Assuntos
Fazendas , Cabras , Exposição Ocupacional/efeitos adversos , Pneumonia/epidemiologia , Pneumonia/etiologia , Aves Domésticas , Características de Residência , Adulto , Criação de Animais Domésticos , Animais , Criança , Pré-Escolar , Feminino , História do Século XXI , Humanos , Masculino , Modelos Estatísticos , Países Baixos/epidemiologia , Razão de Chances , Pneumonia/história , Vigilância em Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA