RESUMO
Genetic and biochemical evidence points to an association between mitochondrial dysfunction and Parkinson's disease (PD). PD-associated mutations in several genes have been identified and include those encoding PTEN-induced putative kinase 1 (PINK1) and parkin. To identify genes, pathways, and pharmacological targets that modulate the clearance of damaged or old mitochondria (mitophagy), here we developed a high-content imaging-based assay of parkin recruitment to mitochondria and screened both a druggable genome-wide siRNA library and a small neuroactive compound library. We used a multiparameter principal component analysis and an unbiased parameter-agnostic machine-learning approach to analyze the siRNA-based screening data. The hits identified in this analysis included specific genes of the ubiquitin proteasome system, and inhibition of ubiquitin-conjugating enzyme 2 N (UBE2N) with a specific antagonist, Bay 11-7082, indicated that UBE2N modulates parkin recruitment and downstream events in the mitophagy pathway. Screening of the compound library identified kenpaullone, an inhibitor of cyclin-dependent kinases and glycogen synthase kinase 3, as a modulator of parkin recruitment. Validation studies revealed that kenpaullone augments the mitochondrial network and protects against the complex I inhibitor MPP+. Finally, we used a microfluidics platform to assess the timing of parkin recruitment to depolarized mitochondria and its modulation by kenpaullone in real time and with single-cell resolution. We demonstrate that the high-content imaging-based assay presented here is suitable for both genetic and pharmacological screening approaches, and we also provide evidence that pharmacological compounds modulate PINK1-dependent parkin recruitment.
Assuntos
Mitocôndrias/metabolismo , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Benzazepinas/química , Benzazepinas/metabolismo , Benzazepinas/farmacologia , Células HeLa , Humanos , Hidrazonas/química , Hidrazonas/metabolismo , Hidrazonas/farmacologia , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Análise de Componente Principal , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genéticaRESUMO
Speed fluctuations of individual birds in natural flocks are moderate, due to the aerodynamic and biomechanical constraints of flight. Yet the spatial correlations of such fluctuations are scale-free, namely they have a range as wide as the entire group, a property linked to the capacity of the system to collectively respond to external perturbations. Scale-free correlations and moderate fluctuations set conflicting constraints on the mechanism controlling the speed of each agent, as the factors boosting correlation amplify fluctuations, and vice versa. Here, using a statistical field theory approach, we suggest that a marginal speed confinement that ignores small deviations from the natural reference value while ferociously suppressing larger speed fluctuations, is able to reconcile scale-free correlations with biologically acceptable group's speed. We validate our theoretical predictions by comparing them with field experimental data on starling flocks with group sizes spanning an unprecedented interval of over two orders of magnitude.
Assuntos
Voo Animal , Estorninhos , Animais , Eventos de MassaRESUMO
Applications of control engineering to mammalian cell biology have been recently implemented for precise regulation of gene expression. In this chapter, we report the main experimental and computational methodologies to implement automatic feedback control of gene expression in mammalian cells using a microfluidics/microscopy platform.
Assuntos
Expressão Gênica , Técnicas Analíticas Microfluídicas/instrumentação , Algoritmos , Animais , Engenharia Genética , Humanos , Dispositivos Lab-On-A-ChipRESUMO
Advances in microscopy, microfluidics, and optogenetics enable single-cell monitoring and environmental regulation and offer the means to control cellular phenotypes. The development of such systems is challenging and often results in bespoke setups that hinder reproducibility. To address this, we introduce Cheetah, a flexible computational toolkit that simplifies the integration of real-time microscopy analysis with algorithms for cellular control. Central to the platform is an image segmentation system based on the versatile U-Net convolutional neural network. This is supplemented with functionality to robustly count, characterize, and control cells over time. We demonstrate Cheetah's core capabilities by analyzing long-term bacterial and mammalian cell growth and by dynamically controlling protein expression in mammalian cells. In all cases, Cheetah's segmentation accuracy exceeds that of a commonly used thresholding-based method, allowing for more accurate control signals to be generated. Availability of this easy-to-use platform will make control engineering techniques more accessible and offer new ways to probe and manipulate living cells.
Assuntos
Sistemas Computacionais , Aprendizado Profundo , Escherichia coli/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Linhagem Celular , Confiabilidade dos Dados , Dispositivos Lab-On-A-Chip , Camundongos , Reprodutibilidade dos Testes , Software , Biologia Sintética/métodosRESUMO
Extracting quantitative measurements from time-lapse images is necessary in external feedback control applications, where segmentation results are used to inform control algorithms. We describe ChipSeg, a computational tool that segments bacterial and mammalian cells cultured in microfluidic devices and imaged by time-lapse microscopy, which can be used also in the context of external feedback control. The method is based on thresholding and uses the same core functions for both cell types. It allows us to segment individual cells in high cell density microfluidic devices, to quantify fluorescent protein expression over a time-lapse experiment, and to track individual mammalian cells. ChipSeg enables robust segmentation in external feedback control experiments and can be easily customized for other experimental settings and research aims.
RESUMO
We study both in silico and in vivo the real-time feedback control of a molecular titration motif that has been earmarked as a fundamental component of antithetic and multicellular feedback control schemes in E. coli. We show that an external feedback control strategy can successfully regulate the average fluorescence output of a bacterial cell population to a desired constant level in real-time. We also provide in silico evidence that the same strategy can be used to track a time-varying reference signal where the set-point is switched to a different value halfway through the experiment. We use the experimental data to refine and parametrize an in silico model of the motif that can be used as an error computation module in future embedded or multicellular control experiments.
Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Retroalimentação Fisiológica , Microfluídica/métodos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Comunicação Celular/fisiologia , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/metabolismo , Isopropiltiogalactosídeo/metabolismo , Cinética , Microscopia de Fluorescência , Modelos BiológicosRESUMO
Cellular systems have evolved numerous mechanisms to adapt to environmental stimuli, underpinned by dynamic patterns of gene expression. In addition to gene transcription regulation, modulation of protein levels, dynamics and localization are essential checkpoints governing cell functions. The introduction of inducible promoters has allowed gene expression control using orthogonal molecules, facilitating its rapid and reversible manipulation to study gene function. However, differing protein stabilities hinder the generation of protein temporal profiles seen in vivo. Here, we improve the Tet-On system integrating conditional destabilising elements at the post-translational level and permitting simultaneous control of gene expression and protein stability. We show, in mammalian cells, that adding protein stability control allows faster response times, fully tunable and enhanced dynamic range, and improved in silico feedback control of gene expression. Finally, we highlight the effectiveness of our dual-input system to modulate levels of signalling pathway components in mouse Embryonic Stem Cells.
Assuntos
Meios de Cultivo Condicionados/farmacologia , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Luminescentes/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Trimetoprima/farmacologia , Animais , Anti-Infecciosos/farmacologia , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/genética , Camundongos , Microscopia Confocal , Proteína Vermelha FluorescenteRESUMO
The Notch effector gene Hes1 is an ultradian clock exhibiting cyclic gene expression in several progenitor cells, with a period of a few hours. Because of the complexity of studying Hes1 in the endogenous setting, and the difficulty of imaging these fast oscillations in vivo, the mechanism driving oscillations has never been proven. Here, we applied a "build it to understand it" synthetic biology approach to construct simplified "hybrid" versions of the Hes1 ultradian oscillator combining synthetic and natural parts. We successfully constructed a simplified synthetic version of the Hes1 promoter matching the endogenous regulation logic. By mathematical modeling and single-cell real-time imaging, we were able to demonstrate that Hes1 is indeed able to generate stable oscillations by a delayed negative feedback loop. Moreover, we proved that introns in Hes1 contribute to the transcriptional delay but may not be strictly necessary for oscillations to occur. We also developed a novel reporter of endogenous Hes1 oscillations able to amplify the bioluminescence signal 5-fold. Our results have implications also for other ultradian oscillators.
Assuntos
Relógios Biológicos/genética , Engenharia de Proteínas/métodos , Biologia Sintética/métodos , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Animais , Proteínas de Bactérias/genética , Sítios de Ligação , Células CHO , Proteínas de Transporte/genética , Cricetulus , Doxiciclina/farmacologia , Retroalimentação Fisiológica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Íntrons , Camundongos , Modelos Teóricos , Regiões Promotoras Genéticas , Análise de Célula Única/métodos , Fator de Transcrição Sp3/genéticaRESUMO
Gene networks and signaling pathways display complex topologies and, as a result, complex nonlinear behaviors. Accumulating evidence shows that both static (concentration) and dynamical (rate-of-change) features of transcription factors, ligands and environmental stimuli control downstream processes and ultimately cellular functions. Currently, however, methods to generate stimuli with the desired features to probe cell response are still lacking. Here, combining tools from Control Engineering and Synthetic Biology (cybergenetics), we propose a simple and cost-effective microfluidics-based platform to precisely regulate gene expression and signaling pathway activity in mammalian cells by means of real-time feedback control. We show that this platform allows (i) to automatically regulate gene expression from inducible promoters in different cell types, including mouse embryonic stem cells; (ii) to precisely regulate the activity of the mTOR signaling pathway in single cells; (iii) to build a biohybrid oscillator in single embryonic stem cells by interfacing biological parts with virtual in silico counterparts. Ultimately, this platform can be used to probe gene networks and signaling pathways to understand how they process static and dynamic features of specific stimuli, as well as for the rapid prototyping of synthetic circuits for biotechnology and biomedical purposes.
Assuntos
Expressão Gênica , Microfluídica/métodos , Transdução de Sinais , Biologia Sintética/métodos , Animais , Automação , Células CHO , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.