Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166752

RESUMO

Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.


Assuntos
Neoplasias da Mama , Neoplasias dos Genitais Femininos , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias dos Genitais Femininos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
2.
Artigo em Inglês | MEDLINE | ID: mdl-36537600

RESUMO

Infertility is a major reproductive health issue worldwide. One of the main problems in infertile women is the failure to generate or release a mature egg. Therefore, the development of new technologies for in vitro generation or induction of mature oocytes can improve various ART procedures. Recently, stem cell-based therapy has opened a new window for several pathological complications. Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity to self-renew and differentiate into the mesodermal lineage. MSCs contain various bioactive molecules which are involved in the regulation of key biological processes. They can secret multiple paracrine factors, such as VEGF, IGF, HGF, EGF, and FGF to stimulate egg maturation. Although MSCs represent a promising source for cell therapy, the potential risk of tumor development reduces their clinical applications. Recent studies have suggested that the supernatant or conditioned medium of MSCs also contains similar components and regulates the oocyte behavior. The MSC-conditioned medium can eliminate the safety concerns associated with MSC transplantation and avoid rejection problems. Although MSC and MSC-CM could improve oocyte quality, ovarian function, and fertility, these improvements have not yet been demonstrated in clinical trials in humans. Hereby, we summarized recent research findings of MSCs-derived conditioned medium in in vitro development of immature oocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA