Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 36(8): 1746-1763, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070747

RESUMO

Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans-an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies.


Assuntos
Evolução Molecular , Genoma , Jubarte/genética , Neoplasias/genética , Seleção Genética , Adaptação Biológica , Animais , Apoptose/genética , Demografia , Genes Supressores de Tumor , Filogenia
2.
J Biol Chem ; 293(13): 4940-4951, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378846

RESUMO

In highly polarized cells such as neurons, compartmentalization of mRNA and of local protein synthesis enables remarkably fast, precise, and local responses to external stimuli. These responses are highly important for neuron growth cone guidance, synapse formation, and regeneration following injury. Because an altered spatial distribution of mRNA can result in mental retardation or neurodegenerative diseases, subcellular transcriptome analysis of neurons could be a useful tool for studying these conditions, but current techniques, such as in situ hybridization, bulk microarray, and RNA-Seq, impose tradeoffs between spatial resolution and multiplexing. To obtain a comprehensive analysis of the cell body versus neurite transcriptome from the same neuron, we have recently developed a label-free, single-cell nanobiopsy platform based on scanning ion conductance microscopy that uses electrowetting within a quartz nanopipette to extract cellular material from living cells with minimal disruption of the cellular membrane and milieu. In this study, we used this platform to collect samples from the cell bodies and neurites of human neurons and analyzed the mRNA pool with multiplex RNA sequencing. The minute volume of a nanobiopsy sample allowed us to extract samples from several locations in the same cell and to map the various mRNA species to specific subcellular locations. In addition to previously identified transcripts, we discovered new sets of mRNAs localizing to neurites, including nuclear genes such as Eomes and Hmgb3 In summary, our single-neuron nanobiopsy analysis provides opportunities to improve our understanding of intracellular mRNA transport and local protein composition in neuronal growth, connectivity, and function.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/biossíntese , Análise de Sequência de RNA , Biópsia/métodos , Proteína HMGB3/biossíntese , Proteína HMGB3/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neuritos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética
3.
Proc Natl Acad Sci U S A ; 112(33): 10467-72, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240372

RESUMO

We use a microfabricated ecology with a doxorubicin gradient and population fragmentation to produce a strong Darwinian selective pressure that drives forward the rapid emergence of doxorubicin resistance in multiple myeloma (MM) cancer cells. RNA sequencing of the resistant cells was used to examine (i) emergence of genes with high de novo substitution densities (i.e., hot genes) and (ii) genes never substituted (i.e., cold genes). The set of cold genes, which were 21% of the genes sequenced, were further winnowed down by examining excess expression levels. Both the most highly substituted genes and the most highly expressed never-substituted genes were biased in age toward the most ancient of genes. This would support the model that cancer represents a revision back to ancient forms of life adapted to high fitness under extreme stress, and suggests that these ancient genes may be targets for cancer therapy.


Assuntos
Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Análise Mutacional de DNA , Doxorrubicina/química , Duplicação Gênica , Genoma Humano , Humanos , Concentração Inibidora 50 , Proteínas Luminescentes/metabolismo , Microfluídica , Modelos Estatísticos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Análise de Sequência de RNA , Transcriptoma , Proteína Vermelha Fluorescente
4.
Proc Natl Acad Sci U S A ; 111(44): E4726-35, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25339441

RESUMO

The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic human breast cancer cells subjected to the chemotherapeutic agent paclitaxel at the single-cell and population levels. Here we show that specific transcriptional programs are enacted within untreated, stressed, and drug-tolerant cell groups while generating high heterogeneity between single cells within and between groups. We further demonstrate that drug-tolerant cells contain specific RNA variants residing in genes involved in microtubule organization and stabilization, as well as cell adhesion and cell surface signaling. In addition, the gene expression profile of drug-tolerant cells is similar to that of untreated cells within a few doublings. Thus, single-cell analyses reveal the dynamics of the stress response in terms of cell-specific RNA variants driving heterogeneity, the survival of a minority population through generation of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to normalcy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Paclitaxel/farmacologia , RNA Neoplásico , Análise de Sequência de RNA , Transcrição Gênica , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
5.
Nano Lett ; 16(2): 1194-200, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26752097

RESUMO

Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucose levels. The nanopipettes were functionalized as glucose nanosensors by immobilizing glucose oxidase (GOx) covalently to the tip so that the interaction of glucose with GOx resulted in a catalytic oxidation of ß-d-glucose to d-gluconic acid, which was measured as a change in impedance due to drop in pH of the medium at the nanopipette tip. Calibration studies showed a direct relationship between impedance changes at the tip and glucose concentration in solution. The glucose nanosensor quantified single cell intracellular glucose levels in human fibroblasts and the metastatic breast cancer lines MDA-MB-231 and MCF7 and revealed that the cancer cells expressed reproducible and reliable increases in glucose levels compared to the nonmalignant cells. Nanopipettes allow repeated sampling of the same cell, as cells remain viable during and after measurements. Therefore, nanopipette-based glucose sensors provide an approach to compare changes in glucose levels with changes in proliferative or metastatic state. The platform has great promise for mechanistic investigations, as a diagnostic tool to distinguish cancer cells from nonmalignant cells in heterogeneous tissue biopsies, as well as a tool for monitoring cancer progression in situ.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama/metabolismo , Glucose/isolamento & purificação , Neoplasias da Mama/patologia , Proliferação de Células , Enzimas Imobilizadas/química , Feminino , Gluconatos/química , Glucose/metabolismo , Glucose Oxidase/química , Humanos , Células MCF-7 , Metástase Neoplásica , Fosforilação Oxidativa , Análise de Célula Única
6.
Genome Res ; 23(10): 1615-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23783272

RESUMO

Pre-mRNA splicing is required for the accurate expression of virtually all human protein coding genes. However, splicing also plays important roles in coordinating subsequent steps of pre-mRNA processing such as polyadenylation and mRNA export. Here, we test the hypothesis that nuclear pre-mRNA processing influences the polyribosome association of alternative mRNA isoforms. By comparing isoform ratios in cytoplasmic and polyribosomal extracts, we determined that the alternative products of ∼30% (597/1954) of mRNA processing events are differentially partitioned between these subcellular fractions. Many of the events exhibiting isoform-specific polyribosome association are highly conserved across mammalian genomes, underscoring their possible biological importance. We find that differences in polyribosome association may be explained, at least in part by the observation that alternative splicing alters the cis-regulatory landscape of mRNAs isoforms. For example, inclusion or exclusion of upstream open reading frames (uORFs) in the 5'UTR as well as Alu-elements and microRNA target sites in the 3'UTR have a strong influence on polyribosome association of alternative mRNA isoforms. Taken together, our data demonstrate for the first time the potential link between alternative splicing and translational control of the resultant mRNA isoforms.


Assuntos
Processamento Alternativo , Citoplasma/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Polirribossomos/metabolismo , Isoformas de RNA/metabolismo , Análise de Sequência de RNA , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Citoplasma/genética , Evolução Molecular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Filogenia , Polirribossomos/genética , Isoformas de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA
7.
Breast Cancer Res Treat ; 154(1): 23-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26456572

RESUMO

FOXM1 is a key transcription factor regulating cell cycle progression, DNA damage response, and a host of other hallmark cancer features, but the role of the FOXM1 cistrome in driving estrogen receptor-positive (ER+) versus estrogen receptor-negative (ER-) breast cancer clinical outcomes remains undefined. Chromatin immunoprecipitation sequencing (ChIP-Seq) coupled with RNA sequencing (RNA-Seq) analyses was used to identify FOXM1 target genes in breast cancer cells (MCF-7) where FOXM1 expression was either induced by cell proliferation or repressed by p53 upregulation. The prognostic performance of these FOXM1 target genes was assessed relative to FOXM transcript levels and a 61-gene proliferation score (PS) for their ability to dichotomize a pooled cohort of 683 adjuvant chemotherapy-naïve, node-negative breast cancer cases (447 ER+, 236 ER-). Differences in distant metastasis-free survival (DMFS) between the dichotomized expression groups were determined by Cox proportional hazard modeling. Proliferation-associated FOXM1 upregulation induced a set of 145 differentially bound and expressed genes (direct targets), and these demonstrated minimal overlap with differentially bound and expressed genes following FOXM1 repression by p53 upregulation. This proliferation-associated FOXM1 cistrome was not only better at significantly predicting metastatic outcome of ER+ breast cancers (HR: 2.8 (2.0-3.8), p = 8.13E-10), but was the only parameter trending toward significance in predicting ER- metastatic outcome (HR: 1.6 (0.9-2.9), p = 0.087). Our findings demonstrate that FOXM1 target genes are highly dependent on the cellular context in which FOXM1 expression is modulated, and a newly identified proliferation-associated FOXM1 cistromic signature best predicts breast cancer metastatic outcome.


Assuntos
Neoplasias da Mama/genética , Fatores de Transcrição Forkhead/genética , Genes/genética , Prognóstico , Neoplasias da Mama/patologia , Proliferação de Células/genética , Intervalo Livre de Doença , Receptor alfa de Estrogênio/genética , Feminino , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Índice Mitótico , Proteínas de Neoplasias/biossíntese
8.
J Clin Microbiol ; 53(7): 2329-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878343

RESUMO

Successful sequencing of the Clostridium difficile genome requires high-quality genomic DNA (gDNA) as the starting material. gDNA extraction using conventional methods is laborious. We describe here an optimized method for the simple extraction of C. difficile gDNA using the QIAamp DNA minikit, which yielded high-quality sequence reads on the Illumina MiSeq platform.


Assuntos
Clostridioides difficile/genética , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Análise de Sequência de DNA/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
9.
Mol Cell Biochem ; 382(1-2): 225-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23817773

RESUMO

Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space missions. Our understanding of the consequences of these high energy charged particles on microRNA (miRNA) regulation is still in infancy. miRNAs are non-coding, single-stranded RNAs of ~22 nucleotides that constitute a novel class of gene regulators. They regulate diverse biological processes, and each miRNA can control hundreds of gene targets. To investigate the effect of proton radiation on these master regulators, we examined the miRNA expression in selected mice organs that had been exposed to whole-body proton irradiation (2 Gy), and compared this to control mice (0 Gy exposure). RNA was isolated from three tissues (testis, brain, and liver) from treated and control mice and subjected to high-throughput small RNA sequencing. Bioinformatics analysis of small RNA sequencing data revealed dysregulation of (p < 0.05; 20 up- and 10 down-regulated) 14 mouse testis, 8 liver, and 8 brain miRNAs. The statistically significant and unique miRNA expression pattern found among three different proton-treated mouse tissues indicates a tissue-specific response to proton radiation. In addition to known miRNAs, sequencing revealed differential expression of 11 miRNAs in proton-irradiated mice that have not been previously reported in association with radiation exposure and cancer. The dysregulation of miRNAs on exposure to proton radiation suggest a possible mechanism of proton particles involvement in the onset of cell tumorgenesis. In summary, we have established that specific miRNAs are vulnerable to proton radiation, that such differential expression profile may depend upon the tissue, and that there are more miRNAs affected by proton radiation than have been previously observed.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , MicroRNAs/metabolismo , Prótons , Irradiação Corporal Total , Animais , Feminino , Masculino , Camundongos , MicroRNAs/genética , Especificidade de Órgãos/genética , Especificidade de Órgãos/efeitos da radiação , Edição de RNA/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
10.
Nucleic Acids Res ; 39(18): e120, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737426

RESUMO

RNA sequencing approaches to transcriptome analysis require a large amount of input total RNA to yield sufficient mRNA using either poly-A selection or depletion of rRNA. This feature makes it difficult to miniaturize transcriptome analysis for greater efficiency. To address this challenge, we devised and validated a simple procedure for the preparation of whole-transcriptome cDNA libraries from a minute amount (500 pg) of total RNA. We compared a single-sample library prepared by this Ovation RNA-Seq system with two available methods of mRNA enrichment (TruSeq poly-A enrichment and RiboMinus rRNA depletion). Using the Ovation preparation method for a set of eight mouse tissue samples, the RNA sequencing data obtained from two different next-generation sequencing platforms (SOLiD and Illumina Genome Analyzer IIx) yielded negligible rRNA reads (<3.5%) while retaining transcriptome sequencing fidelity. We further validated the Ovation amplification technique by examining the resulting library complexity, reproducibility, evenness of transcript coverage, 5' and 3' bias and platform-specific biases. Notably, in this side-by-side comparison, SOLiD sequencing chemistry is biased toward higher GC content of transcriptome and Illumina Genome analyzer IIx is biased away from neutral to lower GC content of the transcriptomics regions.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Amplificação de Ácido Nucleico , RNA Mensageiro/análise , Análise de Sequência de RNA , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/química , RNA Ribossômico/análise , Testículo/metabolismo , Transcriptoma
11.
PLoS One ; 18(8): e0289279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37527243

RESUMO

Single-cell transcriptomics is essential for understanding biological variability among cells in a heterogenous population. Acquiring high-quality single-cell sequencing data from a tissue sample has multiple challenges including isolation of individual cells as well as amplification of the genetic material. Commercially available techniques require the isolation of individual cells from a tissue through extensive manual manipulation before single cell sequence data can be acquired. However, since cells within a tissue have different dissociation constants, enzymatic and mechanical manipulation do not guarantee the isolation of a homogenous population of cells. To overcome this drawback, in this research we have developed a revolutionary approach that utilizes a fully automated nanopipette technology in combination with magnetic nanoparticles to obtain high quality sequencing reads from individual cells within an intact tissue thereby eliminating the need for manual manipulation and single cell isolation. With the proposed technology, it is possible to sample an individual cell within the tissue multiple times to obtain longitudinal information. Single-cell RNAseq was achieved by aspirating only1-5% of sub-single-cell RNA content from individual cells within fresh frozen tissue samples. As a proof of concept, aspiration was carried out from 22 cells within a breast cancer tissue slice using quartz nanopipettes. The mRNA from the aspirate was then selectively captured using magnetic nanoparticles. The RNAseq data from aspiration of 22 individual cells provided high alignment rates (80%) with 2 control tissue samples. The technology is exceptionally simple, quick and efficient as the entire cell targeting and aspiration process is fully automated.


Assuntos
Perfilação da Expressão Gênica , RNA , RNA/genética , RNA Mensageiro/genética , Separação Celular , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos
12.
BMC Microbiol ; 12: 29, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22404909

RESUMO

BACKGROUND: Our ultimate goal is to detect the entire human microbiome, in health and in disease, in a single reaction tube, and employing only commercially available reagents. To that end, we adapted molecular inversion probes to detect bacteria using solely a massively multiplex molecular technology. This molecular probe technology does not require growth of the bacteria in culture. Rather, the molecular probe technology requires only a sequence of forty sequential bases unique to the genome of the bacterium of interest. In this communication, we report the first results of employing our molecular probes to detect bacteria in clinical samples. RESULTS: While the assay on Affymetrix GenFlex Tag16K arrays allows the multiplexing of the detection of the bacteria in each clinical sample, one Affymetrix GenFlex Tag16K array must be used for each clinical sample. To multiplex the clinical samples, we introduce a second, independent assay for the molecular probes employing Sequencing by Oligonucleotide Ligation and Detection. By adding one unique oligonucleotide barcode for each clinical sample, we combine the samples after processing, but before sequencing, and sequence them together. CONCLUSIONS: Overall, we have employed 192 molecular probes representing 40 bacteria to detect the bacteria in twenty-one vaginal swabs as assessed by the Affymetrix GenFlex Tag16K assay and fourteen of those by the Sequencing by Oligonucleotide Ligation and Detection assay. The correlations among the assays were excellent.


Assuntos
Bactérias , Técnicas Microbiológicas/métodos , Técnicas de Sonda Molecular , Bactérias/genética , Bactérias/isolamento & purificação , Simulação por Computador , Feminino , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Vagina/microbiologia
13.
Nucleic Acids Res ; 38(13): e142, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20460461

RESUMO

Next-generation sequencing has proven an extremely effective technology for molecular counting applications where the number of sequence reads provides a digital readout for RNA-seq, ChIP-seq, Tn-seq and other applications. The extremely large number of sequence reads that can be obtained per run permits the analysis of increasingly complex samples. For lower complexity samples, however, a point of diminishing returns is reached when the number of counts per sequence results in oversampling with no increase in data quality. A solution to making next-generation sequencing as efficient and affordable as possible involves assaying multiple samples in a single run. Here, we report the successful 96-plexing of complex pools of DNA barcoded yeast mutants and show that such 'Bar-seq' assessment of these samples is comparable with data provided by barcode microarrays, the current benchmark for this application. The cost reduction and increased throughput permitted by highly multiplexed sequencing will greatly expand the scope of chemogenomics assays and, equally importantly, the approach is suitable for other sequence counting applications that could benefit from massive parallelization.


Assuntos
Análise de Sequência de DNA/métodos , Mutação , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética
14.
Proc Natl Acad Sci U S A ; 106(12): 4611-6, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19264962

RESUMO

Nanopipette technology can uniquely identify biomolecules such as proteins based on differences in size, shape, and electrical charge. These differences are determined by the detection of changes in ionic current as the proteins interact with the nanopipette tip coated with probe molecules. Here we show that electrostatic, biotin-streptavidin, and antibody-antigen interactions on the nanopipette tip surface affect ionic current flowing through a 50-nm pore. Highly charged polymers interacting with the glass surface modulated the rectification property of the nanopipette electrode. Affinity-based binding between the probes tethered to the surface and their target proteins caused a change in the ionic current due to a partial blockade or an altered surface charge. These findings suggest that nanopipettes functionalized with appropriate molecular recognition elements can be used as nanosensors in biomedical and biological research.


Assuntos
Técnicas Biossensoriais/instrumentação , Sondas Moleculares/metabolismo , Nanoestruturas , Coloração e Rotulagem , Animais , Anticorpos , Biomarcadores Tumorais/metabolismo , Biotina/metabolismo , Biotinilação , Bovinos , Eletrólitos , Fluoresceína-5-Isotiocianato/metabolismo , Vidro , Humanos , Proteínas de Neoplasias/metabolismo , Reprodutibilidade dos Testes , Soroalbumina Bovina/metabolismo , Eletricidade Estática , Estreptavidina/metabolismo , Propriedades de Superfície
15.
BMC Bioinformatics ; 12: 479, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22177214

RESUMO

BACKGROUND: The nCounter analysis system (NanoString Technologies, Seattle, WA) is a technology that enables the digital quantification of multiplexed target RNA molecules using color-coded molecular barcodes and single-molecule imaging. This system gives discrete counts of RNA transcripts and is capable of providing a high level of precision and sensitivity at less than one transcript copy per cell. RESULTS: We have designed a web application compatible with any modern web browser that accepts the raw count data produced by the NanoString nCounter analysis system, normalizes it according to guidelines provided by NanoString Technologies, performs differential expression analysis on the normalized data, and provides a heatmap of the results from the differential expression analysis. CONCLUSION: NanoStriDE allows biologists to take raw data produced by a NanoString nCounter analysis system and easily interpret differential expression analysis of this data represented through a heatmap. NanoStriDE is freely accessible to use on the NanoStriDE website and is available to use under the GPL v2 license.


Assuntos
Perfilação da Expressão Gênica/métodos , Humanos , Internet , Nanotecnologia/métodos , Análise de Sequência com Séries de Oligonucleotídeos
16.
Anal Chem ; 83(16): 6121-6, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21761859

RESUMO

The calcium ion response of a quartz nanopipette was enhanced by immobilization of calmodulin to the nanopore surface. Binding to the analyte is rapidly reversible in neutral buffer and requires no change in media or conditions to regenerate the receptor. The signal remained reproducible over numerous measurements. The modified nanopipette was used to measure binding affinity to calcium ions, with a K(d) of 6.3 ± 0.8 × 10(-5) M. This affinity is in good agreement with reported values of the solution-state protein. The behavior of such reversible nanopore-based sensors can be used to study proteins in a confined environment and may lead to new devices for continuous monitoring.


Assuntos
Técnicas Biossensoriais/instrumentação , Cálcio/análise , Calmodulina/metabolismo , Proteínas Imobilizadas/metabolismo , Nanoestruturas/química , Nanotecnologia , Cálcio/metabolismo , Calmodulina/química , Cátions/análise , Cátions/metabolismo , Proteínas Imobilizadas/química , Cinética , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Ligação Proteica , Quartzo/química
17.
Langmuir ; 27(10): 6528-33, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21510657

RESUMO

Most of the research in the field of nanopore-based platforms is focused on monitoring ion currents and forces as individual molecules translocate through the nanopore. Molecular gating, however, can occur when target analytes interact with receptors appended to the nanopore surface. Here we show that a solid state nanopore functionalized with polyelectrolytes can reversibly bind metal ions, resulting in a reversible, real-time signal that is concentration dependent. Functionalization of the sensor is based on electrostatic interactions, requires no covalent bond formation, and can be monitored in real time. Furthermore, we demonstrate how the applied voltage can be employed to tune the binding properties of the sensor. The sensor has wide-ranging applications and, its simplest incarnation can be used to study binding thermodynamics using purely electrical measurements with no need for labeling.


Assuntos
Eletricidade , Eletrólitos/química , Metais/análise , Metais/química , Nanoporos , Polímeros/química , Técnicas Biossensoriais , Quitosana/química , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Fatores de Tempo
18.
Mol Cell Biochem ; 349(1-2): 213-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21080036

RESUMO

The space radiation environment consists of trapped particle radiation, solar particle radiation, and galactic cosmic radiation (GCR), in which protons are the most abundant particle type. During missions to the moon or to Mars, the constant exposure to GCR and occasional exposure to particles emitted from solar particle events (SPE) are major health concerns for astronauts. Therefore, in order to determine health risks during space missions, an understanding of cellular responses to proton exposure is of primary importance. The expression of DNA repair genes in response to ionizing radiation (X-rays and gamma rays) has been studied, but data on DNA repair in response to protons is lacking. Using qPCR analysis, we investigated changes in gene expression induced by positively charged particles (protons) in four categories (0, 0.1, 1.0, and 2.0 Gy) in nine different DNA repair genes isolated from the testes of irradiated mice. DNA repair genes were selected on the basis of their known functions. These genes include ERCC1 (5' incision subunit, DNA strand break repair), ERCC2/NER (opening DNA around the damage, Nucleotide Excision Repair), XRCC1 (5' incision subunit, DNA strand break repair), XRCC3 (DNA break and cross-link repair), XPA (binds damaged DNA in preincision complex), XPC (damage recognition), ATA or ATM (activates checkpoint signaling upon double strand breaks), MLH1 (post-replicative DNA mismatch repair), and PARP1 (base excision repair). Our results demonstrate that ERCC1, PARP1, and XPA genes showed no change at 0.1 Gy radiation, up-regulation at 1.0 Gy radiation (1.09 fold, 7.32 fold, 0.75 fold, respectively), and a remarkable increase in gene expression at 2.0 Gy radiation (4.83 fold, 57.58 fold and 87.58 fold, respectively). Expression of other genes, including ATM and XRCC3, was unchanged at 0.1 and 1.0 Gy radiation but showed up-regulation at 2.0 Gy radiation (2.64 fold and 2.86 fold, respectively). We were unable to detect gene expression for the remaining four genes (XPC, ERCC2, XRCC1, and MLH1) in either the experimental or control animals.


Assuntos
Reparo do DNA/genética , Regulação da Expressão Gênica/efeitos da radiação , Prótons , Lesões Experimentais por Radiação/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Regulação para Cima , Proteína de Xeroderma Pigmentoso Grupo A/genética
19.
Proc Natl Acad Sci U S A ; 105(52): 20637-40, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19074273

RESUMO

Magnetic nanotags (MNTs) are a promising alternative to fluorescent labels in biomolecular detection assays, because minute quantities of MNTs can be detected with inexpensive giant magnetoresistive (GMR) sensors, such as spin valve (SV) sensors. However, translating this promise into easy to use and multilplexed protein assays, which are highly sought after in molecular diagnostics such as cancer diagnosis and treatment monitoring, has been challenging. Here, we demonstrate multiplex protein detection of potential cancer markers at subpicomolar concentration levels and with a dynamic range of more than four decades. With the addition of nanotag amplification, the analytic sensitivity extends into the low fM concentration range. The multianalyte ability, sensitivity, scalability, and ease of use of the MNT-based protein assay technology make it a strong contender for versatile and portable molecular diagnostics in both research and clinical settings.


Assuntos
Bioensaio/métodos , Biomarcadores Tumorais/análise , Técnicas de Diagnóstico Molecular/métodos , Nanotecnologia/métodos , Bioensaio/instrumentação , Humanos , Magnetismo/instrumentação , Magnetismo/métodos , Técnicas de Diagnóstico Molecular/instrumentação , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Nanotecnologia/instrumentação , Sensibilidade e Especificidade
20.
Electrophoresis ; 31(8): 1322-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20408144

RESUMO

Measurement of the length of DNA fragments plays a pivotal role in genetic mapping, disease diagnostics, human identification and forensic applications. PCR followed by electrophoresis is used for DNA length measurement of STRs, a process that requires labeled primers and allelic ladders as standards to avoid machine error. Sequencing-based approaches can be used for STR analysis to eliminate the requirement of labeled primers and allelic ladder. However, the limiting factor with this approach is unsynchronized polymerization in heterozygous sample analysis, in which alleles with different lengths can lead to imbalanced heterozygote peak height ratios. We have developed a rapid DNA length measurement method using peptide nucleic acid and dideoxy dNTPs to "tailor" DNA templates for accurate sequencing to overcome this hurdle. We also devised an accelerated "dyad" pyrosequencing strategy, such that the combined approach can be used as a faster, more accurate alternative to de novo sequencing. Dyad sequencing interrogates two bases at a time by allowing the polymerase to incorporate two nucleotides to DNA template, cutting the analysis time in half. In addition, for the first time, we show the effect of peptide nucleic acid as a blocking probe to stop polymerization, which is essential to analyze the heterozygous samples by sequencing. This approach provides a new platform for rapid and cost-effective DNA length measurement for STRs and resequencing of small DNA fragments.


Assuntos
Alelos , DNA/química , Didesoxinucleotídeos/química , Ácidos Nucleicos Peptídicos/química , Análise de Sequência de DNA/métodos , Sequência de Bases , DNA/genética , Humanos , Repetições de Microssatélites , Dados de Sequência Molecular , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA