Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 74(3): 745-756, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28466089

RESUMO

Resident microbial communities living on amphibian skin can have significant effects on host health, yet the basic ecology of the host-microbiome relationship of many amphibian taxa is poorly understood. We characterized intraspecific variation in the skin microbiome of the salamander Ensatina eschscholtzii xanthoptica, a subspecies composed of four genetically distinct populations distributed throughout the San Francisco Bay Area and the Sierra Nevada mountains in California, USA. We found that salamanders from four geographically and genetically isolated populations harbor similar skin microbial communities, which are dominated by a common core set of bacterial taxa. Additionally, within a population, the skin microbiome does not appear to differ significantly between salamanders of different ages or sexes. In all cases, the salamander skin microbiomes were significantly different from those of the surrounding terrestrial environment. These results suggest that the relationship between E. e. xanthoptica salamanders and their resident skin microbiomes is conserved, possibly indicating a stable mutualism between the host and microbiome.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Pele/microbiologia , Urodelos/microbiologia , Fatores Etários , Animais , Bactérias/classificação , California , Feminino , Geografia , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Fatores Sexuais
2.
Microbiol Spectr ; : e0519422, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790179

RESUMO

Honey bees are critical pollinators in both agricultural and ecological settings. Recent declines in honey bee colonies in the United States have put increased strain on agricultural pollination. Although there are many environmental stressors implicated in honey bee disease, there has been intensifying focus on the role of microbial attacks on honey bee health. Despite the long-standing appreciation for the association of fungi of various groups with honey bees and their broader environment, the effects of these interactions on honey bee health are incompletely understood. Here, we report the discovery of colonization of the honey bee digestive tract by the environmental yeast Lachancea thermotolerans. Experimental colonization of honey bee digestive tracts by L. thermotolerans revealed that this yeast species maintains high levels in the honey bee midgut only at temperatures below the typical colony temperature. In newly eclosed bees, L. thermotolerans colonization alters the microbiome, suggesting that environmental yeasts can impact its composition. Future studies should be undertaken to better understand the role of L. thermotolerans and other environmental yeasts in honey bee health. IMPORTANCE Although many fungal species are found in association with honey bees and their broader environment, the effects of these interactions on honey bee health are largely unknown. Here, we report the discovery that a yeast commonly found in the environment can be found at high levels in honey bee digestive tracts. Experimentally feeding this yeast to honey bees showed that the yeast's ability to maintain high levels in the digestive tract is influenced by temperature and can lead to alterations of the microbiome in young bees. These studies provide a foundation for future studies to better understand the role of environmental yeasts in honey bee health.

3.
Front Microbiol ; 9: 442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593686

RESUMO

A multitude of microorganisms live on and within plant and animal hosts, yet the ecology and evolution of these microbial communities remains poorly understood in many taxa. This study examined the extent to which environmental factors and host taxonomic identity explain microbiome variation within two salamander genera, Ensatina and Batrachoseps, in the family Plethodontidae. In particular, we assessed whether microbiome differentiation paralleled host genetic distance at three levels of taxonomy: genus and high and low clade levels within Ensatina eschscholtzii. We predicted that more genetically related host populations would have more similar microbiomes than more distantly related host populations. We found that salamander microbiomes possess bacterial species that are most likely acquired from their surrounding soil environment, but the relative representation of those bacterial species is significantly different on the skin of salamanders compared to soil. We found differences in skin microbiome alpha diversity among Ensatina higher and lower clade groups, as well as differences between Ensatina and Batrachoseps. We also found that relative microbiome composition (beta diversity) did vary between Ensatina lower clades, but differences were driven by only a few clades and not correlated to clade genetic distances. We conclude this difference was likely a result of Ensatina lower clades being associated with geographic location and habitat type, as salamander identity at higher taxonomic levels (genus and Ensatina higher clades) was a weak predictor of microbiome composition. These results lead us to conclude that environmental factors are likely playing a more significant role in salamander cutaneous microbiome assemblages than host-specific traits.

4.
PeerJ ; 6: e5521, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186692

RESUMO

Adenoviruses (AdVs) infect a wide range of hosts, and they have undergone recent and ancient host transfers multiple times. In reptiles, AdVs have been found in many captive individuals, and have been implicated in morbidity and mortality in several species. Yet the pathogenicity, transmission, phylogenetic distribution, and source of AdVs in the environment are still unknown. We therefore chose to opportunistically sample deceased captive Anolis sagrei individuals that were collected from different populations in the Bahamas and the Cayman Islands, as well as fecal samples from one island population, to explore the disease dynamics and diversity of adenovirus infecting A. sagrei populations. We found that adenovirus infection was present in our captive colony at low prevalence (26%), and was likely not the primary cause of observed morbidity and mortality. Among the 10 individuals (out of 38 sampled) which tested positive for adenovirus, we identified four adenovirus clades, several of which are distantly related, despite the close relationships of the A. sagrei host populations. These results suggest that while adenovirus may not be highly prevalent in the wild, it is present at low levels across much of the range of A. sagrei. It may undergo frequent host switching across both deep and shallow host divergences.

5.
Evolution ; 70(5): 1009-22, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27074746

RESUMO

Urbanization is an increasingly important dimension of global change, and urban areas likely impose significant natural selection on the species that reside within them. Although many species of plants and animals can survive in urban areas, so far relatively little research has investigated whether such populations have adapted (in an evolutionary sense) to their newfound milieu. Even less of this work has taken place in tropical regions, many of which have experienced dramatic growth and intensification of urbanization in recent decades. In the present study, we focus on the neotropical lizard, Anolis cristatellus. We tested whether lizard ecology and morphology differ between urban and natural areas in three of the most populous municipalities on the island of Puerto Rico. We found that environmental conditions including temperature, humidity, and substrate availability differ dramatically between neighboring urban and natural areas. We also found that lizards in urban areas use artificial substrates a large proportion of the time, and that these substrates tend to be broader than substrates in natural forest. Finally, our morphological data showed that lizards in urban areas have longer limbs relative to their body size, as well as more subdigital scales called lamellae, when compared to lizards from nearby forested habitats. This shift in phenotype is exactly in the direction predicted based on habitat differences between our urban and natural study sites, combined with our results on how substrates are being used by lizards in these areas. Findings from a common-garden rearing experiment using individuals from one of our three pairs of populations provide evidence that trait differences between urban and natural sites may be genetically based. Taken together, our data suggest that anoles in urban areas are under significant differential natural selection and may be evolutionarily adapting to their human-modified environments.


Assuntos
Cidades , Lagartos/genética , Fenótipo , Seleção Genética , Animais , Ecossistema , Lagartos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA