Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(23): 5135-5150.e28, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37865090

RESUMO

Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Biofilmes , Pulmão/microbiologia , Pulmão/patologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Tuberculose/patologia , Virulência , Fenômenos Biomecânicos
2.
Proc Natl Acad Sci U S A ; 121(25): e2315670121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861604

RESUMO

Tuberculosis (TB) is the world's deadliest infectious disease, with over 1.5 million deaths and 10 million new cases reported anually. The causative organism Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required step to determine the pathogen's antibiotic susceptibility. Both rapid identification and rapid antibiotic susceptibility testing of Mtb are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the Mtb complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin, and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and on patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all five BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5,000. We show how this instrument and our machine learning model enable combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.


Assuntos
Antituberculosos , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Análise Espectral Raman , Análise Espectral Raman/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana/métodos , Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Isoniazida/farmacologia
3.
Proc Natl Acad Sci U S A ; 120(28): e2304981120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406100

RESUMO

How the behavior of cells emerges from their constituent subcellular biochemical and physical parts is an outstanding challenge at the intersection of biology and physics. A remarkable example of single-cell behavior occurs in the ciliate Lacrymaria olor, which hunts for its prey via rapid movements and protrusions of a slender neck, many times the size of the original cell body. The dynamics of this cell neck is powered by a coat of cilia across its length and tip. How a cell can program this active filamentous structure to produce desirable behaviors like search and homing to a target remains unknown. Here, we present an active filament model that allows us to uncover how a "program" (time sequence of active forcing) leads to "behavior" (filament shape dynamics). Our model captures two key features of this system-time-varying activity patterns (extension and compression cycles) and active stresses that are uniquely aligned with the filament geometry-a "follower force" constraint. We show that active filaments under deterministic, time-varying follower forces display rich behaviors including periodic and aperiodic dynamics over long times. We further show that aperiodicity occurs due to a transition to chaos in regions of a biologically accessible parameter space. We also identify a simple nonlinear iterated map of filament shape that approximately predicts long-term behavior suggesting simple, artificial "programs" for filament functions such as homing and searching space. Last, we directly measure the statistical properties of biological programs in L. olor, enabling comparisons between model predictions and experiments.


Assuntos
Citoesqueleto , Modelos Biológicos , Cílios , Matemática
4.
Proc Natl Acad Sci U S A ; 120(41): e2303940120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792511

RESUMO

Cellular systems are known to exhibit some of the fastest movements in biology, but little is known as to how single cells can dissipate this energy rapidly and adapt to such large accelerations without disrupting internal architecture. To address this, we investigate Spirostomum ambiguum-a giant cell (1-4 mm in length) well-known to exhibit ultrafast contractions (50% of body length) within 5 ms with a peak acceleration of 15[Formula: see text]. Utilizing transmitted electron microscopy and confocal imaging, we identify an association of rough endoplasmic reticulum (RER) and vacuoles throughout the cell-forming a contiguous fenestrated membrane architecture that topologically entangles these two organelles. A nearly uniform interorganelle spacing of 60 nm is observed between RER and vacuoles, closely packing the entire cell. Inspired by the entangled organelle structure, we study the mechanical properties of entangled deformable particles using a vertex-based model, with all simulation parameters matching 10 dimensionless numbers to ensure dynamic similarity. We demonstrate how entangled deformable particles respond to external loads by an increased viscosity against squeezing and help preserve spatial relationships. Because this enhanced damping arises from the entanglement of two networks incurring a strain-induced jamming transition at subcritical volume fractions, which is demonstrated through the spatial correlation of velocity direction, we term this phenomenon "topological damping." Our findings suggest a mechanical role of RER-vacuolar meshwork as a metamaterial capable of damping an ultrafast contraction event.


Assuntos
Células Gigantes , Vacúolos , Microscopia Eletrônica , Cabeça
5.
Nature ; 571(7766): 560-564, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292551

RESUMO

The biophysical relationships between sensors and actuators1-5 have been fundamental to the development of complex life forms. Swimming organisms generate abundant flows that persist in aquatic environments6-13, and responding promptly to external stimuli is key to survival14-19. Here we present the discovery of 'hydrodynamic trigger waves' in cellular communities of the protist Spirostomum ambiguum that propagate-in a manner similar to a chain reaction20-22-hundreds of times faster than their swimming speed. By coiling its cytoskeleton, Spirostomum can contract its long body by 60% within milliseconds23, experiencing accelerations that can reach forces of 14g. We show that a single cellular contraction (the transmitter) generates long-ranged vortex flows at intermediate Reynolds numbers that can, in turn, trigger neighbouring cells (the receivers). To measure the sensitivity to hydrodynamic signals in these receiver cells, we present a high-throughput suction-flow device for probing mechanosensitive ion channels24 by back-calculating the microscopic forces on the cell membrane. We analyse and quantitatively model the ultra-fast hydrodynamic trigger waves in a universal framework of antenna and percolation theory25,26, and reveal a phase transition that requires a critical colony density to sustain collective communication. Our results suggest that this signalling could help to organize cohabiting communities over large distances and influence long-term behaviour through gene expression (comparable to quorum sensing16). In more immediate terms, because contractions release toxins27, synchronized discharges could facilitate the repulsion of large predators or immobilize large prey. We postulate that numerous aquatic organisms other than protists could coordinate their behaviour using variations of hydrodynamic trigger waves.


Assuntos
Comunicação Celular , Cilióforos/citologia , Cilióforos/fisiologia , Hidrodinâmica , Natação/fisiologia , Movimentos da Água , Animais , Organismos Aquáticos/citologia , Organismos Aquáticos/genética , Organismos Aquáticos/fisiologia , Biofísica , Cilióforos/genética , Citoesqueleto/fisiologia , Comportamento Predatório , Reologia , Fatores de Tempo
6.
Soft Matter ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922641

RESUMO

Two-component Marangoni contracted droplets can be arranged into arbitrary two-dimensional tiling patterns where they display rich dynamics due to vapor-mediated long-range interactions. Recent work has characterized the centered hexagonal honeycomb lattice, showing it to be a highly frustrated system with many metastable states and relaxation occurring over multiple timescales [Molina et al., Proc. Natl. Acad. Sci. U. S. A., 2021, 118, e2020014118]. Here, we study this system under the influence of a rotating gravitational field. High amplitudes are able to completely disrupt droplet-droplet interactions, making it possible to identify a transition between field-dominated and interaction-dominated regimes. The system displays complex hysteresis behavior, the details of which are connected to the emergence of linear mesoscale structures. These mesoscale features display an elasticity that is governed by the balance between gravity and long-range vapor-mediated attractions. We find that disorder plays an important role in determining the dynamics of these features. Finally, we demonstrate annealing the system by progressively reducing the field amplitude, a process that reduces configurational energy compared to a rapid quench. The ability to manipulate vapor-mediated interactions in deliberately designed droplet tilings provides a novel platform for table-top explorations of multi-body interactions.

7.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417307

RESUMO

Geometry in materials is a key concept which can determine material behavior in ordering, frustration, and fragmentation. More specifically, the behavior of interacting degrees of freedom subject to arbitrary geometric constraints has the potential to be used for engineering materials with exotic phase behavior. While advances in lithography have allowed for an experimental exploration of geometry on ordering that has no precedent in nature, many of these methods are low throughput or the underlying dynamics remain difficult to observe directly. Here, we introduce an experimental system that enables the study of interacting many-body dynamics by exploiting the physics of multidroplet evaporation subject to two-dimensional spatial constraints. We find that a high-energy initial state of this system settles into frustrated, metastable states with relaxation on two timescales. We understand this process using a minimal dynamical model that simulates the overdamped dynamics of motile droplets by identifying the force exerted on a given droplet as being proportional to the two-dimensional vapor gradients established by its neighbors. Finally, we demonstrate the flexibility of this platform by presenting experimental realizations of droplet-lattice systems representing different spin degrees of freedom and lattice geometries. Our platform enables a rapid and low-cost means to directly visualize dynamics associated with complex many-body systems interacting via long-range interactions. More generally, this platform opens up the rich design space between geometry and interactions for rapid exploration with minimal resources.

8.
Nat Methods ; 17(10): 1040-1051, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32807956

RESUMO

The behavior and microscale processes associated with freely suspended organisms, along with sinking particles underlie key ecological processes in the ocean. Mechanistically studying such multiscale processes in the laboratory presents a considerable challenge for microscopy: how to measure single cells at microscale resolution, while allowing them to freely move hundreds of meters in the vertical direction? Here we present a solution in the form of a scale-free, vertical tracking microscope, based on a 'hydrodynamic treadmill' with no bounds for motion along the axis of gravity. Using this method to bridge spatial scales, we assembled a multiscale behavioral dataset of nonadherent planktonic cells and organisms. Furthermore, we demonstrate a 'virtual-reality system for single cells', wherein cell behavior directly controls its ambient environmental parameters, enabling quantitative behavioral assays. Our method and results exemplify a new paradigm of multiscale measurement, wherein one can observe and probe macroscale and ecologically relevant phenomena at microscale resolution. Beyond the marine context, we foresee that our method will allow biological measurements of cells and organisms in a suspended state by freeing them from the confines of the coverslip.


Assuntos
Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Microscopia/métodos , Animais , Invertebrados/classificação , Invertebrados/fisiologia , Larva/fisiologia , Movimento , Plâncton , Natação , Interface Usuário-Computador
9.
Soft Matter ; 19(14): 2539-2553, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36942719

RESUMO

Foam is a canonical example of disordered soft matter where local force balance leads to the competition of many metastable configurations. We present an experimental and theoretical framework for "active foam" where an individual voxel inflates and deflates periodically. Local periodic activity leads to irreversible and reversible T1 transitions throughout the foam, eventually reaching a reversible limit cycle. Individual vertices displace outwards and subsequently return back to their approximate original radial position; this radial displacement follows an inverse law. Surprisingly, each return trajectory does not retrace its outbound path but encloses a finite area, with a clockwise (CW) or counterclockwise (CCW) direction, which we define as a local swirl. These swirls form coherent patterns spanning the scale of the material. Using a dynamical model, we demonstrate that swirl arises from disorder in the local micro-structure. We demonstrate that disorder and strain-rate control a crossover between cooperation and competition between swirls in adjacent vertices. Over 5-10 cycles, the region around the active voxel structurally adapts from a higher-energy metastable state to a lower-energy state, locally ordering and stiffening the structure. The coherent domains of CW/CCW swirl become smaller as the system stabilizes, indicative of a process similar to the Hall-Petch effect. Finally, we introduce a statistical model that evolves edge lengths with a set of rules to explore how this class of materials adapts as a function of initial structure. Adding activity to foam couples structural disorder and adaptive dynamics to encourage the development of a new class of abiotic, cellularized active matter.

10.
Med Vet Entomol ; 37(3): 491-498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36872598

RESUMO

To combat mosquito-borne diseases, a variety of vector control tools have been implemented. Estimating age structure in populations of vector species is important for understanding transmission potential. Age-grading techniques have been used as critical methods for evaluating the efficacy of vector control tools. However, methods like mark-release-recapture and ovarian dissection are laborious and require a high level of training. For decades, scientists have discussed the wide array of acoustic signatures of different mosquito species. These distinguishable wingbeat signatures with spatiotemporal classification allow mosquitoes of the same species to locate one another for mating. In recent years, the use of sensitive acoustic devices like mobile phones have proved effective. Wingbeat signatures can be used to identify mosquito species without the challenge of intensive field collections and morphological and molecular identifications. In this study, laboratory Aedes aegypti (L.) female and male wingbeats were recorded using mobile phones to determine whether sex and age differences with chronological time, and across different physiological stages, can be detected. Our results indicate significantly different wingbeat signatures between male and female Ae. aegypti, and a change of wingbeat frequencies with age and reproduction stage in females.


Assuntos
Aedes , Masculino , Feminino , Animais , Aedes/fisiologia , Mosquitos Vetores/fisiologia , Controle de Mosquitos/métodos
11.
Proc Natl Acad Sci U S A ; 115(44): E10333-E10341, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309963

RESUMO

By definition of multicellularity, all animals need to keep their cells attached and intact, despite internal and external forces. Cohesion between epithelial cells provides this key feature. To better understand fundamental limits of this cohesion, we study the epithelium mechanics of an ultrathin (∼25 µm) primitive marine animal Trichoplax adhaerens, composed essentially of two flat epithelial layers. With no known extracellular matrix and no nerves or muscles, T. adhaerens has been claimed to be the "simplest known living animal," yet is still capable of coordinated locomotion and behavior. Here we report the discovery of the fastest epithelial cellular contractions known in any metazoan, to be found in T. adhaerens dorsal epithelium (50% shrinkage of apical cell area within one second, at least an order of magnitude faster than other known examples). Live imaging reveals emergent contractile patterns that are mostly sporadic single-cell events, but also include propagating contraction waves across the tissue. We show that cell contraction speed can be explained by current models of nonmuscle actin-myosin bundles without load, while the tissue architecture and unique mechanical properties are softening the tissue, minimizing the load on a contracting cell. We propose a hypothesis, in which the physiological role of the contraction dynamics is to resist external stresses while avoiding tissue rupture ("active cohesion"), a concept that can be further applied to engineering of active materials.


Assuntos
Organismos Aquáticos/fisiologia , Células Epiteliais/fisiologia , Epitélio/fisiologia , Placozoa/fisiologia , Actinas/metabolismo , Animais , Organismos Aquáticos/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Epitélio/metabolismo , Miosinas/metabolismo , Placozoa/metabolismo
12.
Soft Matter ; 14(37): 7724-7730, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30191241

RESUMO

When a mixture of propylene glycol and water is deposited on a clean glass slide, it forms a droplet of a given apparent contact angle rather than spreading as one would expect on such a high-energy surface. The droplet is stabilized by a Marangoni flow due to the non-uniformity of the components' concentrations between the border and the apex of the droplet, itself a result of evaporation. These self-contracting droplets have unusual properties such as absence of pinning and the ability to move under an external humidity gradient. The droplets' apparent contact angles are a function of their concentration and the external humidity. Here we study the motion of such droplets sliding down slopes and compare the results to normal non-volatile droplets. We precisely control the external humidity and explore the influence of the volume, viscosity, surface tension, and contact angle. We find that the droplets suffer a negligible pinning force so that for small velocities the capillary number (Ca) is directly proportional to the Bond number (Bo): Ca = Bo sin α with α the angle of the slope. Lastly we study the successive shapes the droplets take when sliding at larger and larger velocities.

13.
Soft Matter ; 14(5): 681-692, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29205244

RESUMO

We present a microfluidic platform for magnetic manipulation of water droplets immersed in bulk oil-based ferrofluid. Although non-magnetic, the droplets are exclusively controlled by magnetic fields without any pressure-driven flow. The fluids are dispensed in a sub-millimeter Hele-Shaw chamber that includes permalloy tracks on its substrate. An in-plane rotating magnetic field magnetizes the permalloy tracks, producing local magnetic gradients, while an orthogonal magnetic field magnetizes the bulk ferrofluid. To minimize the magnetostatic energy of the system, the water droplets are attracted towards the locations on the tracks where the bulk ferrofluid is repelled. Using this technique, we demonstrate synchronous generation and propagation of water droplets, study the kinematics of propagation, and analyze the flow of the bulk ferrofluid. In addition, we show controlled break-up of droplets and droplet-to-droplet interactions. Finally, we discuss future applications owing to the potential biocompatibility of the droplets.

15.
J Exp Biol ; 220(Pt 19): 3411-3418, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28729343

RESUMO

We present a simple, intuitive algorithm for visualizing time-varying flow fields that can reveal complex flow structures with minimal user intervention. We apply this technique to a variety of biological systems, including the swimming currents of invertebrates and the collective motion of swarms of insects. We compare our results with more experimentally difficult and mathematically sophisticated techniques for identifying patterns in fluid flows, and suggest that our tool represents an essential 'middle ground' allowing experimentalists to easily determine whether a system exhibits interesting flow patterns and coherent structures without resorting to more intensive techniques. In addition to being informative, the visualizations generated by our tool are often striking and elegant, illustrating coherent structures directly from videos without the need for computational overlays. Our tool is available as fully documented open-source code for MATLAB, Python or ImageJ at www.flowtrace.org.


Assuntos
Algoritmos , Voo Animal , Hidrodinâmica , Invertebrados/fisiologia , Reologia/métodos , Animais , Insetos/fisiologia , Locomoção , Comportamento Social , Natação
16.
J Exp Biol ; 219(Pt 5): 752-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936640

RESUMO

Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air.


Assuntos
Besouros/fisiologia , Voo Animal , Animais , Fenômenos Biomecânicos , Besouros/ultraestrutura , Extremidades/anatomia & histologia , Modelos Teóricos , Tensão Superficial , Gravação em Vídeo
17.
Science ; 384(6700): eadk5511, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843314

RESUMO

Fundamental limits of cellular deformations, such as hyperextension of a living cell, remain poorly understood. Here, we describe how the single-celled protist Lacrymaria olor, a 40-micrometer cell, is capable of reversibly and repeatably extending its necklike protrusion up to 1200 micrometers in 30 seconds. We discovered a layered cortical cytoskeleton and membrane architecture that enables hyperextensions through the folding and unfolding of cellular-scale origami. Physical models of this curved crease origami display topological singularities, including traveling developable cones and cytoskeletal twisted domain walls, which provide geometric control of hyperextension. Our work unravels how cell geometry encodes behavior in single cells and provides inspiration for geometric control in microrobotics and deployable architectures.


Assuntos
Forma Celular , Extensões da Superfície Celular , Cilióforos , Citoesqueleto , Membrana Celular/ultraestrutura , Citoesqueleto/ultraestrutura , Cilióforos/citologia , Cilióforos/fisiologia , Extensões da Superfície Celular/ultraestrutura , Microtúbulos/ultraestrutura
18.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37293063

RESUMO

Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called 'polonaise movements', appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.

19.
Elife ; 122024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727576

RESUMO

Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called 'polonaise movements', appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.


Assuntos
Gastrulação , Morfogênese , Animais , Movimento Celular , Linha Primitiva/embriologia , Polaridade Celular , Gástrula/embriologia , Embrião de Galinha
20.
Elife ; 122024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381133

RESUMO

Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3-4 µm in size) shoot out a 100-nm-wide PT at a speed of 300 µm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60-140 µm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.


Assuntos
Anatomia Regional , Núcleo Celular , Biofísica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA