RESUMO
Strain plays an important role for the optical properties of monolayer transition metal dichalcogenides (TMDCs). Here, we investigate strain effects in a monolayer MoSe2 sample with a large bubble region using µ-Raman, second harmonic generation (SHG), µ-photoluminescence and magneto µ-photoluminescence at low temperature. Remarkably, our results reveal the presence of a non-uniform strain field and the observation of emission peaks at lower energies which are the signatures of exciton and trion quasiparticles red-shifted by strain effects in the bubble region, in agreement with our theoretical predictions. Furthermore, we have observed that the emission in the strained region decreases the trion binding energy and enhances the valley g-factors as compared to non-strained regions. Considering uniform biaxial strain effects within the unit cell of the TMDC monolayer (ML), our first principles calculations predict the observed enhancement of the exciton valley Zeeman effect. In addition, our results suggest that the exciton-trion fine structure plays an important role for the optical properties of strained TMDC ML. In summary, our study provides fundamental insights on the behaviour of excitons and trions in strained monolayer MoSe2 which are particularly relevant to properly characterize and understand the fine structure of excitonic complexes in strained TMDC systems/devices.
RESUMO
BACKGROUND: The concern with environmental security to avoid contamination of individuals was intensified with the crisis established by SARS-CoV-2. The COVID-19 pandemic has shown the necessity to create systems and devices capable of clearing the air in an environment of micro-organisms more efficiently. The development of systems that allow the removal of micro-droplets mainly originating from breathing or talking from the air was the motivation of this study. AIM: This article describes a portable and easy-to-operate system that helps to eliminate the droplets or aerosols present in the environment by circulating air through an ultraviolet-C (UV-C) reactor. METHODS: An air circulation device was developed, and a proof-of-principle study was performed using the device against bacteria in simulated and natural environments. The microbiological analysis was carried out by the simple sedimentation technique. In order to compare the experimental results and the expected results for other micro-organisms, the reduction rate values for bacteria and viruses were calculated and compared with the experimental results based on technical parameters (clean air delivery rate (CADR) and air changes per hour (ACH)). FINDINGS: Results showed that the micro-organisms were eliminated with high efficiency by the air circulation decontamination device, with reductions of 99.9% in the proof-of-principle study, and 84-97% in the hospital environments study, contributing to reducing contamination of individuals in environments considered to present risk. CONCLUSION: This study resulted in a low-cost and relatively simple device, which was shown to be effective and safe, and could be replicated, especially in low-income countries, respecting the standards for air disinfection using UV-C technologies.