Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 244: 117834, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895604

RESUMO

Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960-2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr-1, and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr-1. Over the period 2013-2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000-2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The formation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m-2 (5-95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m-2), CO2 (34.3 mW m-2), and NOx (17.5 mW m-2). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m-2. Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.

2.
Atmos Environ (1994) ; 44(37): 4678-4734, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32288556

RESUMO

Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion. The last major international assessment of these impacts was made by the Intergovernmental Panel on Climate Change (IPCC) in 1999. Here, a comprehensive updated assessment of aviation is provided. Scientific advances since the 1999 assessment have reduced key uncertainties, sharpening the quantitative evaluation, yet the basic conclusions remain the same. The climate impact of aviation is driven by long-term impacts from CO2 emissions and shorter-term impacts from non-CO2 emissions and effects, which include the emissions of water vapour, particles and nitrogen oxides (NO x ). The present-day radiative forcing from aviation (2005) is estimated to be 55 mW m-2 (excluding cirrus cloud enhancement), which represents some 3.5% (range 1.3-10%, 90% likelihood range) of current anthropogenic forcing, or 78 mW m-2 including cirrus cloud enhancement, representing 4.9% of current forcing (range 2-14%, 90% likelihood range). According to two SRES-compatible scenarios, future forcings may increase by factors of 3-4 over 2000 levels, in 2050. The effects of aviation emissions of CO2 on global mean surface temperature last for many hundreds of years (in common with other sources), whilst its non-CO2 effects on temperature last for decades. Much progress has been made in the last ten years on characterizing emissions, although major uncertainties remain over the nature of particles. Emissions of NO x result in production of ozone, a climate warming gas, and the reduction of ambient methane (a cooling effect) although the overall balance is warming, based upon current understanding. These NO x emissions from current subsonic aviation do not appear to deplete stratospheric ozone. Despite the progress made on modelling aviation's impacts on tropospheric chemistry, there remains a significant spread in model results. The knowledge of aviation's impacts on cloudiness has also improved: a limited number of studies have demonstrated an increase in cirrus cloud attributable to aviation although the magnitude varies: however, these trend analyses may be impacted by satellite artefacts. The effect of aviation particles on clouds (with and without contrails) may give rise to either a positive forcing or a negative forcing: the modelling and the underlying processes are highly uncertain, although the overall effect of contrails and enhanced cloudiness is considered to be a positive forcing and could be substantial, compared with other effects. The debate over quantification of aviation impacts has also progressed towards studying potential mitigation and the technological and atmospheric tradeoffs. Current studies are still relatively immature and more work is required to determine optimal technological development paths, which is an aspect that atmospheric science has much to contribute. In terms of alternative fuels, liquid hydrogen represents a possibility and may reduce some of aviation's impacts on climate if the fuel is produced in a carbon-neutral way: such fuel is unlikely to be utilized until a 'hydrogen economy' develops. The introduction of biofuels as a means of reducing CO2 impacts represents a future possibility. However, even over and above land-use concerns and greenhouse gas budget issues, aviation fuels require strict adherence to safety standards and thus require extra processing compared with biofuels destined for other sectors, where the uptake of such fuel may be more beneficial in the first instance.

3.
Science ; 220(4595): 410-1, 1983 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-17831413

RESUMO

Helium is removed at an average rate of 10(6) atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on Earth, suggesting comparable abundances of crustal uranium and thorium.

4.
Science ; 215(4540): 1614-5, 1982 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17788486

RESUMO

Recombination of O(2)(+) represents a source of fast oxygen atoms in Venus' exosphere, and subsequent collisions of oxygen atoms with hydrogen atoms lead to escape of about 10(7) hydrogen atoms per square centimeter per second. Escape of deuterium atoms is negligible, and the ratio of deuterium to hydrogen should increase with time. It is suggested that the mass-2 ion observed by Pioneer Venus is D(+), which implies a ratio of deuterium to hydrogen in the contemporary atmosphere of about 10(-2), an initial ratio of 5 x 10(-5) and an original H(2)O abundance not less than 800 grams per square centimeter.

5.
Science ; 271(5252): 1042-3, 1996 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17792297
6.
Science ; 239(4842): 847, 1988 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17759021
7.
Nature ; 312: 227-31, 1984 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11541989

RESUMO

An increase in the concentration of inorganic chlorine to levels comparable to that of oxidized reactive nitrogen could cause a significant change in the chemistry of the lower stratosphere leading to a reduction potentially larger than 15% in the column density of ozone. This could occur, for example by the middle of the next century, if emissions of man-made chlorocarbons were to grow at a rate of 3% per year. Ozone could be further depressed by release of industrial bromocarbon.


Assuntos
Atmosfera/química , Bromo/análise , Cloro/análise , Ozônio/análise , Clorofluorcarbonetos/análise , Halogênios/análise , Radical Hidroxila/análise , Metano/análise , Nitrogênio/análise , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA