Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38375906

RESUMO

Resonant Auger processes provide a unique perspective on electronic interactions and excited vibrational and electronic states of molecular ions. Here, new data are presented on the resonant Auger decay of excited CH3I in the region just below the I 4d-1 ionization threshold. The resonances include the Rydberg series converging to the five spin-orbit and ligand-field split CH3I (I 4d-1) thresholds, as well as resonances corresponding to excitation from the I 4d5/2,3/2 orbitals into the σ* lowest unoccupied molecular orbital. This study focuses on participator decay that populates the lowest lying states of CH3I+, in particular, the X̃2E3/2 and 2E1/2 states, and on spectator decay that populates the lowest-lying (CH3I2+)σ* states of CH3I+. The CH3I (I 4d-1)σ* resonances are broad, and dissociation to CH3 + I competes with the autoionization of the core-excited states. Auger decay as the molecule dissociates produces a photoelectron spectrum with a long progression (up to v3+ ∼ 25) in the C-I stretching mode of the X̃2E3/2 and 2E1/2 states, providing insights into the shape of the dissociative core-excited surface. The observed spectator decay processes indicate that CH3I+ is formed on the repulsive wall of the lower-lying (CH3I2+)σ* potentials, and the photon-energy dependence of the processes provides insights into the relative slopes of the (4d-1)σ* and (CH3I2+)σ* potential surfaces. Data are also presented for the spectator decay of higher lying CH3I (I 4d-1)nl Rydberg resonances. Photoelectron angular distributions for the resonant Auger processes provide additional information that helps distinguish these processes from the direct ionization signal.

2.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748015

RESUMO

New data are presented on the resonant Auger decay of iodobenzene (C6H5I) in the region of the I 4d-1 ionization threshold. The excited molecules decay by participator and spectator processes to populate single-hole valence states and two-hole, one-particle excited states of the cation, providing new information on the structure of C6H5I+. Excitation of dissociative C6H5I (I 4d5/2,3/2-1)σ* resonances can, in principle, result in ultrafast dissociation to C6H5 + I** and the subsequent autoionization of I**, but no evidence for this process is observed. The results are compared with our recent study of the resonant Auger decay of methyl iodide (CH3I).

3.
J Chem Phys ; 160(10)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38469909

RESUMO

Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers. The phase relationship of the two FEL pulses varied in time, but as demonstrated previously, a shot-by-shot analysis allows the spectra to be sorted according to the phase between the two pulses. The wave packets were probed by angle-resolved photoionization using an infrared pulse with a variable delay after the pair of excitation pulses. The photoelectron branching fractions and angular distributions display oscillations that depend on both the time delays and the relative phases of the VUV pulses. The combination of frequency, time delay, and phase selection provides significant control over the ionization process and ultimately improves the ability to analyze and assign complex molecular spectra.

4.
Phys Chem Chem Phys ; 24(4): 1944-1959, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023533

RESUMO

Photoelectron spectroscopy has long been a powerful method in the toolbox of experimental physical chemistry and molecular physics. Recent improvements in coincidence methods, charged-particle imaging, and electron energy resolution have greatly expanded the variety of environments in which photoelectron spectroscopy can be applied, as well as the range of questions that can now be addressed. In this Perspectives Article, we focus on selected recent studies that highlight these advances and research areas. The topics include reactive intermediates and new thermochemical data, high-resolution comparisons of experiment and theory using methods based on pulsed-field ionisation (PFI), and the application of photoelectron spectroscopy as an analytical tool to monitor chemical reactions in complex environments, like model flames, catalytic or high-temperature reactors.

5.
Phys Chem Chem Phys ; 24(3): 1367-1379, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34951418

RESUMO

Linearly polarized synchrotron radiation has been used to record polarization dependent, non-resonant Auger electron spectra of XeF2, encompassing the bands due to the xenon M45N1N45, M45N23N45, M45N45N45 and M45N45V and fluorine KVV transitions. Resonantly excited Auger spectra have been measured at photon energies coinciding with the Xe 3d5/2 → σ* and the overlapped Xe 3d3/2/F 1s → σ* excitations in XeF2. The non-resonant and resonantly excited spectra have enabled the Auger electron angular distributions, as characterized by the ßA parameter, to be determined for the M45N45N45 transitions. In the photon energy range over which the Auger electron angular distributions were measured, theoretical results indicate that transitions into the εf continuum channel dominate the Xe 3d photoionization in XeF2. In this limit, the theoretical value of the atomic alignment parameter (A20) characterizing the core ionized state becomes constant. This theoretical value has been used to obtain the Auger electron intrinsic anisotropy parameters (α2) from the ßA parameters extracted from our non-resonant Auger spectra. For a particular Auger transition, the electron kinetic energy measured in the resonantly excited spectrum is higher than that in the directly ionized spectrum, due to the screening provided by the electron promoted into the σ* orbital. The interpretation of the F KVV Auger band in XeF2 has been discussed in relation to previously published one-site populations of the doubly charged ions (XeF22+). The experimental results show that the ionization energies of the doubly charged states predominantly populated in the decay of a vacancy in the F 1s orbital in XeF2 tend to be higher than those populated in the decay of a vacancy in the Xe 4d level in XeF2.

6.
J Chem Phys ; 154(14): 144305, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33858156

RESUMO

We have used the FERMI free-electron laser to perform time-resolved photoelectron imaging experiments on a complex group of resonances near 15.38 eV in the absorption spectrum of molecular nitrogen, N2, under jet-cooled conditions. The new data complement and extend the earlier work of Fushitani et al. [Opt. Express 27, 19702-19711 (2019)], who recorded time-resolved photoelectron spectra for this same group of resonances. Time-dependent oscillations are observed in both the photoelectron yields and the photoelectron angular distributions, providing insight into the interactions among the resonant intermediate states. In addition, for most states, we observe an exponential decay of the photoelectron yield that depends on the ionic final state. This observation can be rationalized by the different lifetimes for the intermediate states contributing to a particular ionization channel. Although there are nine resonances within the group, we show that by detecting individual photoelectron final states and their angular dependence, we can identify and differentiate quantum pathways within this complex system.

7.
Phys Chem Chem Phys ; 21(5): 2337-2344, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30656348

RESUMO

The photoelectron spectrum of the X1Σ+ → X+2Σ+ ionizing transition of hydrogen isocyanide (HNC) is measured for the first time at a fixed photon energy (13 eV). The assignment of the spectrum is supported by wave-packet calculations simulating the photoionization transition spectrum and using ab initio calculations of the potential energy surfaces for the three lowest electronic states of the cation. The photoelectron spectrum allows the retrieval of the fundamental of the CN stretching mode of the cationic ground state ([small nu, Greek, tilde]3 = 2260 ± 80 cm-1) and the adiabatic ionization energy of hydrogen isocyanide: IE(HNC) = 12.011 ± 0.010 eV, which is far below that of HCN (IE(HCN) = 13.607 eV). In light of this latter result, the thermodynamics of the HCN+/HNC+ isomers is discussed and a short summary of the values available in the literature is given.

8.
J Chem Phys ; 149(9): 094304, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195315

RESUMO

Auger electron spectra following excitation or ionization of the I 3d level in CH3I have been recorded with horizontally or vertically plane polarized synchrotron radiation. These spectra have enabled the Auger electron angular distributions, as characterized by the ß parameter, to be determined. The I 3d photoionization partial cross section of CH3I has been calculated with the continuum multiple scattering approach, and the results show that in the photon energy range over which Auger spectra were measured, the I 3d cross section exhibits an atomic-like behavior and is dominated by transitions into the εf continuum channel. In this limit, the theoretical value of the alignment parameter (A20) characterizing the core ionized state in an atom becomes constant, independent of photon energy. This theoretical value has been used to obtain the Auger electron intrinsic anisotropy parameters (α2) from the ß parameters extracted from our normal (non-resonant) molecular Auger spectra. The resulting anisotropy parameters for the M45N45N45 transitions in CH3I have been compared to those calculated for the corresponding transitions in xenon, and the experimental and theoretical results are in good agreement. Anisotropy parameters have also been measured for the M45N1N45, M45N23N45, and M45N45O23 transitions. For the M45N1N45 and M45N23N45 Auger decays in CH3I, the experimentally derived angular distributions do not exhibit the strong dependence on the final ionic state that is predicted for these transitions in xenon. Resonantly excited Auger spectra have been recorded at 620.4 and 632.0 eV, coinciding with the I 3d5/2 → σ* and 3d3/2 → σ* transitions, respectively. The resulting Auger electron angular distributions for the M4N45N45 and M5N45N45 decays were found to exhibit a higher anisotropy than those for the normal process. This is due to the larger photo-induced alignment in the neutral core excited state. For a particular Auger transition, the Auger electron kinetic energy measured in the resonantly excited spectrum is higher than that in the normal spectrum. This shift, due to the screening provided by the electron excited into the σ* orbital, has been rationalized by calculating orbital ionization energies of I 3d excited and I 3d ionized states in CH3I.

9.
J Chem Phys ; 149(14): 144302, 2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30316287

RESUMO

Ionization of the I 3d, 4s, and 4p orbitals in methyl iodide (CH3I) has been studied by using synchrotron radiation to measure the total ion yield and by recording photoelectron spectra with linearly polarized radiation in two polarization orientations. The complete photoelectron spectrum of CH3I has been recorded at several photon energies, and bands due to the C 1s, I 3d, 4s, 4p, and 4d atomic-like orbitals, as well as the molecular orbitals, have been observed and assigned. In the vicinity of the I 3d5/2 and 3d3/2 ionization thresholds at 626.8 and 638.3 eV, respectively, the ion yield displays weak structure in the pre-edge region due to transitions into valence or Rydberg states, and, at higher energies, a shoulder and a broad maximum attributed to the I 3d5/2 → εf and the I 3d3/2 → εf shape resonances, respectively. The absorption spectrum calculated using time-dependent density functional theory, within the Tamm-Dancoff approximation, has allowed assignments to be proposed for the valence and Rydberg states. The Stieltjes imaging technique has been used to simulate the absorption spectrum above the ionization threshold and indicates that transitions into the f(l = 3) continuum channel dominate. This conclusion has been corroborated by a Continuum Multiple Scattering-Xα (CMS-Xα) calculation. The asymmetric broadening of the photoelectron bands associated with the I 3d orbital, due to post collision interaction, is taken into account in our experimental analysis. Experimentally derived photoelectron anisotropy parameters for the I 3d orbital are in good agreement with the theoretical predictions obtained with the CMS-Xα approach. The I 3d shake-up/shake-off photoelectron spectrum has been recorded, and assignments have been proposed for several of the satellites. The M4N45N45 and M5N45N45 Auger electron yields have been measured, and that for the M5N45N45 decay exhibits a maximum due to interchannel coupling between the 3d5/2 and 3d3/2 continua. The photoelectron band associated with the I 4p orbital has an unusual appearance. Based upon previous theoretical work for the analogous Xe 4p orbital, it appears that the initial I 4p-1 hole state decays rapidly through Coster-Kronig and super-Coster-Kronig transitions. This leads to a redistribution of the spectral intensity associated with the I 4p orbital and results in a photoelectron spectrum containing a single structured band together with an extended continuum. Another continuum is observed on the high binding energy side of the peak due to the 4s orbital, and we assign this to super-Coster-Kronig transitions into the 4p-14d-1 continuum.

10.
Nat Commun ; 13(1): 7170, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418902

RESUMO

The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy. We observe charge redistribution accompanying core-excitation followed by Auger decay, eventually leading to dissociation and hole trapping at one site of the molecule. The presented technique is general in nature with sensitivity to chemical environment changes including transient electronic excited state dynamics. This work provides a route to investigate energy and charge transport processes in more complex systems by tracking selective chemical bond changes on their natural timescale.


Assuntos
Monóxido de Carbono , Diatomáceas , Humanos , Núcleo Celular , Aberrações Cromossômicas , Eletrônica
11.
J Chem Phys ; 134(4): 044315, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280733

RESUMO

Velocity map photoelectron imaging was used to study the photoionization of Xe(2) in several low-lying 5d and 6p Rydberg states. The Rydberg states were prepared by two-photon excitation and ionized by either one additional photon from the pump laser (2+1 ionization), or by one photon of a second color (2+1(') ionization). The 2+1 images and associated photoelectron spectra were consistent with previous results, although some adjustment of previously proposed equilibrium bond lengths was necessary to fit the spectra with Franck-Condon factor calculations. The 2+1(') images provided higher resolution photoelectron spectra and, in conjunction with the Xe(2)(+) potentials reported by Zehnder and co-workers [J. Chem. Phys. 128, 234306 (2008)] and the 6p and 5d Xe(2)∗ potentials calculated by Jonin and Spiegelmann [J. Chem. Phys. 117, 3059 (2002)], provided a means for improving the Xe(2)∗ potentials. New experimental data are also presented for photoionization populating the Xe(2)(+) I(1∕2g) state, and are used to provide a better description of its potential curve.

13.
J Phys Chem A ; 114(42): 11238-43, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20504034

RESUMO

Photodissociation of acetaldehyde (CH3CHO) at 266 nm produced CH3 and HCO radicals, and single-photon vacuum ultraviolet ionization was used to record velocity map ion images of both CH3+ and HCO+. Comparison of the translational energy distributions from both species indicates that secondary fragmentation of HCO is negligible for 266 nm photodissociation. Thus, the relative photoion signals for CH3+ and HCO+ in the mass spectrometer, combined with the recently measured absolute photoionization cross section of CH3, allowed the determination of the absolute photoionization cross section of HCO (σ(HCO) = 4.8 ± 1.5(2.0), 5.9 ± 1.6(2.2), and 3.7 ± 1.2(1.6) Mb at 10.257, 10.304, and 10.379 eV, respectively). The observed values are quite small but consistent with the similarly small value at threshold for the isoelectronic species NO. This behavior is discussed in terms of the character of the HOMO in both molecules.


Assuntos
Acetaldeído/química , Formiatos/química , Fotoquímica , Teoria Quântica
14.
J Chem Phys ; 132(12): 124108, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20370115

RESUMO

The Rydberg states of Xe(2) in the region between 76,000 and 84,000 cm(-1) were studied by using a combination of two-photon excitation and velocity map ion imaging. The electronic states in this region are based on the Xe((1)S(0))+Xe 6p and 5d dissociation limits, and the large number of states leads to numerous curve crossings and distorted potentials. These Rydberg states can decay by predissociation or fluorescence or can be photoionized, dissociatively photoionized, or photodissociated by the absorption of a single additional photon. Furthermore, the molecular ion can be photodissociated as well. While numerous other techniques have been applied to this problem, velocity map ion imaging provides a high resolution approach to determine the operative processes. When combined with existing data obtained by other methods, the present experiments allow a more complete understanding of the assignment and behavior of these states.

15.
J Phys Chem A ; 113(32): 9057-64, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19610650

RESUMO

The photodissociation of 2-iodoethanol was studied within the A (sigma* <-- n) absorption band at several wavelengths between 253 and 298 nm, and the velocity distributions and angular distributions of the photofragments were characterized by using velocity-map ion imaging. The two dominant dissociation channels correspond to the production of the 2-hydroxyethyl radical, C2H4OH, and I(2P(3/2)) and I*(2P(1/2)), and in both channels, approximately 50% of the available excess energy is partitioned into translational energy of the fragments. The branching fractions for the I and I* channels at 266 nm were determined by using a combination of (1) the translational energy distributions for the separate I and I* channels determined by two-photon resonant, three-photon ionization, (2) the distributions for the combined I + I* channels determined by single-photon ionization at 118 nm, and (3) the relative photoionization cross sections of I and I* at 118 nm. Evidence was observed for either the secondary decomposition of C2H4OH, the photodissociation of C2H4OH, or the dissociative ionization of the C2H4OH radicals produced in the I channel. These mechanisms are also discussed.

16.
J Chem Phys ; 130(13): 134306, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19355731

RESUMO

The photodissociation of i-propyl iodide in the A absorption band was studied by using velocity map ion imaging following excitation between 304 and 253 nm. The translational energy distributions and translational energy dependence of the angular distributions of the I (2)P(3/2) and (2)P(1/2) photofragments were recorded as a function of the photodissociation wavelength. These distributions are used to decompose the i-C(3)H(7)+I (2)P(3/2) channel into contributions from two processes: Excitation to the (3)Q(0(+)) state followed by crossing onto the (1)Q(1) surface, and direct excitation to the (3)Q(1) surface followed by dissociation on that surface. As in the case of methyl iodide, the former process dominates; the latter process contributes only in the red wing of the absorption band, with its contribution peaking at approximately 287 nm with an absorption of approximately 1% of the band maximum. The data for the i-C(3)H(7)+I(*) (2)P(1/2) channel display a smooth behavior across the full energy range of the present study, and are consistent with direct excitation to the (3)Q(0(+)) surface followed by dissociation on that surface.

17.
J Phys Chem A ; 112(39): 9382-6, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18693716

RESUMO

By combining a state-of-the-art high-harmonic ultrafast soft X-ray source with field-free dynamic alignment, we map the angular dependence of molecular photoionization yields for the first time for a nondissociative molecule. The observed modulation in ion yield as a function of molecular alignment is attributed to the molecular frame transition dipole moment of single-photon ionization to the X, A and B states of N2(+) and CO2(+). Our data show that the transition dipoles for single-photon ionization of N2 and CO2 at 43 eV have larger perpendicular components than parallel ones. A direct comparison with published theoretical partial wave ionization cross-sections confirms these experimental observations, which are the first results to allow such comparison with theory for bound cation states. The results provide the first step toward a novel method for measuring molecular frame transition dipole matrix elements.

18.
J Phys Chem A ; 112(39): 9336-43, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18572896

RESUMO

The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

19.
Science ; 345(6194): 267-8, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25035473
20.
J Chem Phys ; 127(14): 144301, 2007 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17935389

RESUMO

The photodissociation of 2-bromopropene at 193 nm produces C(3)H(5) radicals with a distribution of internal energies that spans the threshold for the secondary decomposition of the 2-propenyl radicals into C(3)H(4)+H. Just above this threshold, the decomposition rate is on the nanosecond time scale, and in the present study, time-resolved velocity-map ion imaging is used to gain insight into this process. The results provide information on the energy dependence of the secondary dissociation process. In addition, comparison of the results with theoretical predictions of the energy dependence of the dissociation rate provides information on the branching between fragment rotational and vibrational energies in the primary photodissociation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA