Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 9(5): 459-62, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22543379

RESUMO

The 1000 Genomes Project was launched as one of the largest distributed data collection and analysis projects ever undertaken in biology. In addition to the primary scientific goals of creating both a deep catalog of human genetic variation and extensive methods to accurately discover and characterize variation using new sequencing technologies, the project makes all of its data publicly available. Members of the project data coordination center have developed and deployed several tools to enable widespread data access.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Genômica/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Variação Genética , Humanos
2.
Bioinform Biol Insights ; 9(Suppl 1): 9-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26568680

RESUMO

In the last decade, high-throughput DNA sequencing has become a disruptive technology and pushed the life sciences into a distributed ecosystem of sequence data producers and consumers. Given the power of genomics and declining sequencing costs, biology is an emerging "Big Data" discipline that will soon enter the exabyte data range when all subdisciplines are combined. These datasets must be transferred across commercial and research networks in creative ways since sending data without thought can have serious consequences on data processing time frames. Thus, it is imperative that biologists, bioinformaticians, and information technology engineers recalibrate data processing paradigms to fit this emerging reality. This review attempts to provide a snapshot of Big Data transfer across networks, which is often overlooked by many biologists. Specifically, we discuss four key areas: 1) data transfer networks, protocols, and applications; 2) data transfer security including encryption, access, firewalls, and the Science DMZ; 3) data flow control with software-defined networking; and 4) data storage, staging, archiving and access. A primary intention of this article is to orient the biologist in key aspects of the data transfer process in order to frame their genomics-oriented needs to enterprise IT professionals.

3.
Nat Genet ; 39(10): 1181-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17898773

RESUMO

The National Center for Biotechnology Information has created the dbGaP public repository for individual-level phenotype, exposure, genotype and sequence data and the associations between them. dbGaP assigns stable, unique identifiers to studies and subsets of information from those studies, including documents, individual phenotypic variables, tables of trait data, sets of genotype data, computed phenotype-genotype associations, and groups of study subjects who have given similar consents for use of their data.


Assuntos
Bases de Dados Genéticas , Genótipo , Fenótipo , Biologia Computacional , Bases de Dados Factuais , National Library of Medicine (U.S.)/organização & administração , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA