RESUMO
Proline-rich antimicrobial peptides (PrAMPs) may be a valuable weapon against multi-drug resistant pathogens, combining potent antimicrobial activity with low cytotoxicity. We have identified novel PrAMPs from five cetacean species (cePrAMPs), and characterized their potency, mechanism of action and in vitro cytotoxicity. Despite the homology between the N-terminal of cePrAMPs and the bovine PrAMP Bac7, some differences emerged in their sequence, activity spectrum and mode of action. CePrAMPs with the highest similarity with the Bac7(1-35) fragment inhibited bacterial protein synthesis without membrane permeabilization, while a second subgroup of cePrAMPs was more membrane-active but less efficient at inhibiting bacterial translation. Such differences may be ascribable to differences in presence and positioning of Trp residues and of a conserved motif seemingly required for translation inhibition. Unlike Bac7(1-35), which requires the peptide transporter SbmA for its uptake, the activity of cePrAMPs was mostly independent of SbmA, regardless of their mechanism of action. Two peptides displayed a promisingly broad spectrum of activity, with minimal inhibiting concentration MIC ≤ 4 µM against several bacteria of the ESKAPE group, including Pseudomonas aeruginosa and Enterococcus faecium. Our approach has led us to discover several new peptides; correlating their sequences and mechanism of action will provide useful insights for designing optimized future peptide-based antibiotics.
Assuntos
Antibacterianos/farmacologia , Cetáceos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Animais , Peptídeos Catiônicos Antimicrobianos , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Bovinos/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Alinhamento de Sequência , Análise de Sequência de Proteína , CatelicidinasRESUMO
A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (â¼1.1 Gb) includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest.
Assuntos
Genoma , Perus/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , DNA/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade da EspécieRESUMO
BACKGROUND: Accurate and current functional annotation of microarray probes is essential for the analysis and interpretation of the biological processes involved. As gene structures and functional annotation are updated in genome databases, the annotation attached to microarray probes must be updated so that scientists have access to the latest information with which to analyse their data. RESULTS: We have designed a pipeline and database for the annotation of microarray probes using publically available databases. The pipeline is based on NCBI BLAST, Perl and MySQL. The pipeline was used to annotate a subset of 791 differentially expressed ArkGenomics chicken probes from an experiment involving chickens infected with the protozoan parasite Eimeria. Using our pipeline, 770 of the probes were assigned at least one entry in either the Ensembl, UniGene or the DFCI gene indices databases. CONCLUSION: The pipeline described here provides a simple and robust way of maintaining up-to-date and accurate annotation for microarray probes. The pipeline is designed in such a way as to be flexible and easy to update with new information.
RESUMO
BACKGROUND: Microarrays allow genome-wide assays of gene expression. There is a need for user-friendly software to visualise and analyse these data. Analysing microarray data in the context of biological pathways is now common, and several tools exist. RESULTS: We describe the use of MAPPFinder, a component of GenMAPP to characterise the biological pathways affected in chickens infected with the protozoan parasite Eimeria. Several pathways were significantly affected based on the unadjusted p-value, including several immune-system pathways. CONCLUSION: GenMAPP/MAPPFinder provides a means to rapidly visualise pathways affected in microarray studies. However, it relies on good genome annotation and having genes reliably linked to pathway objects. We show that GenMAPP/MAPPFinder can produce useful results, and as the annotation of the chicken genome improves, so will the level of information gained.
RESUMO
BACKGROUND: Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/SABRE workshop. In this manuscript we compare their annotation strategies and results. Furthermore, we analyse the effect of differences in updated annotation on functional analysis for an experiment involving Eimeria infected chickens and finally we propose guidelines for optimal annotation strategies. RESULTS: IMAD, OligoRAP and sigReannot update both annotation and estimated target specificity. The 3 pipelines can assign oligos to target specificity categories although with varying degrees of resolution. Target specificity is judged based on the amount and type of oligo versus target-gene alignments (hits), which are determined by filter thresholds that users can adjust based on their experimental conditions. Linking oligos to annotation on the other hand is based on rigid rules, which differ between pipelines.For 52.7% of the oligos from a subset selected for in depth comparison all pipelines linked to one or more Ensembl genes with consensus on 44.0%. In 31.0% of the cases none of the pipelines could assign an Ensembl gene to an oligo and for the remaining 16.3% the coverage differed between pipelines. Differences in updated annotation were mainly due to different thresholds for hybridisation potential filtering of oligo versus target-gene alignments and different policies for expanding annotation using indirect links. The differences in updated annotation packages had a significant effect on GO term enrichment analysis with consensus on only 67.2% of the enriched terms. CONCLUSION: In addition to flexible thresholds to determine target specificity, annotation tools should provide metadata describing the relationships between oligos and the annotation assigned to them. These relationships can then be used to judge the varying degrees of reliability allowing users to fine-tune the balance between reliability and coverage. This is important as it can have a significant effect on functional microarray analysis as exemplified by the lack of consensus on almost one third of the terms found with GO term enrichment analysis based on updated IMAD, OligoRAP or sigReannot annotation.
RESUMO
BACKGROUND: The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. RESULTS: Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. CONCLUSION: It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.