Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Sci Data ; 10(1): 874, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062064

RESUMO

The UCLA Cosmochemistry Database was initiated as part of a data-rescue and -storage project aimed at archiving a variety of cosmochemical data acquired at University of California, Los Angeles (UCLA). The data collection includes elemental compositions of extraterrestrial materials analyzed by UCLA cosmochemists over the last five decades. The analytical techniques include atomic absorption spectrometry (AAS) and neutron activation analysis (NAA) at UCLA. The data collection is stored on the Astromaterials Data System (Astromat). We provide both interactive tables and downloadable datasheets for users to access all data. The UCLA Cosmochemistry Database archives cosmochemical data that are essential tools for increasing our understanding of the nature and origin of extraterrestrial materials. Future studies can reference the data collection in the examination, analysis, and classification of newly acquired extraterrestrial samples.

3.
Sci Rep ; 5: 17786, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26633804

RESUMO

We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA