Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 32(18): 5055-5070, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37492990

RESUMO

The 'good genes' hypothesis for the evolution of male secondary sexual traits poses that female preferences for such traits are driven by indirect genetic benefits. However, support for the hypothesis remains ambiguous, and, in particular, the genetic basis for the benefits has rarely been investigated. Here, we use seminatural populations of Trinidadian guppies to investigate whether sexually selected traits (orange, black and iridescent colouration, gonopodium length and body size) predict fitness measured as the number of grandoffspring, a metric that integrates across fitness components and sexes. Furthermore, we tested whether two potential sources of genetic benefits-major histocompatibility complex (MHC) genotypes and multilocus heterozygosity (MLH)-are significant predictors of fitness and of the size of sexually selected traits. We found a significant, nonlinear effect of the area of black pigmentation and male body size on the number of grandoffspring, suggesting stabilizing selection on black area, and nonlinear selection favouring small body size. MLH was heritable (h2 = 0.14) and significantly predicted the number of grandoffspring, indicating the potential for genetic benefits based on heterozygosity. We also found support for local heterozygosity effects, which may reflect a noneven distribution of genetic load across the genome. MHC genotype was not significantly associated with any tested fitness component, or with the load of Gyrodactylus parasites. Neither MHC nor MLH was significant predictor of sexually selected traits. Overall, our results highlight the role of heterozygosity in determining fitness, but do not provide support for male sexually selected traits being indicators of genetic quality.


Assuntos
Poecilia , Animais , Masculino , Feminino , Poecilia/genética , Poecilia/parasitologia , Heterozigoto , Fenótipo , Genótipo , Complexo Principal de Histocompatibilidade/genética
2.
Exp Appl Acarol ; 90(3-4): 219-226, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37498400

RESUMO

Bulb mites are an economically significant pest of subterranean parts of plants and a versatile laboratory animal. However, the genetic structure of their populations remains unknown. To fill this gap in our knowledge of their biology, we set up a field experiment in which we allowed mites to colonize onion bulbs, and then determined the genetic structure of colonisers based on a panel of microsatellite loci. We found moderate but significant population structure among sites separated by ca. 20 m (FST range 0.03-0.21), with 7% of genetic variance distributed among sites. Allelic richness within some bulbs was nearly as high as that in the total population, suggesting that colonisation of bulbs was not associated with strong population bottlenecks. The significant genetic structure we observed over small spatial scales seems to reflect limited dispersal of mites in soil.


Assuntos
Acaridae , Ácaros , Animais , Ácaros/genética , Acaridae/genética , Estruturas Genéticas
3.
Mol Ecol ; 31(12): 3400-3415, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510766

RESUMO

Major histocompatibility complex (MHC) genes encode proteins crucial for adaptive immunity of vertebrates. Negative frequency-dependent selection (NFDS), resulting from adaptation of parasites to common MHC types, has been hypothesized to maintain high, functionally relevant polymorphism of MHC, but demonstration of this relationship has remained elusive. In particular, differentiation of NFDS from fluctuating selection, resulting from changes in parasite communities in time and space (FS), has proved difficult in short-term studies. Here, we used temporal data, accumulated through long-term monitoring of helminths infecting bank voles (Myodes glareolus), to test specific predictions of NFDS on MHC class II. Data were collected in three, moderately genetically differentiated subpopulations in Poland, which were characterized by some stable spatiotemporal helminth communities but also events indicating introduction of new species and loss of others. We found a complex association between individual MHC diversity and species richness, where intermediate numbers of DRB supertypes correlated with lowest species richness, but the opposite was true for DQB supertypes-arguing against universal selection for immunogenetic optimality. We also showed that particular MHC supertypes explain a portion of the variance in prevalence and abundance of helminths, but this effect was subpopulation-specific, which is consistent with both NFDS and FS. Finally, in line with NFDS, we found that certain helminths that have recently colonized or spread in a given subpopulation, more frequently or intensely infected voles with MHC supertypes that have been common in the recent past. Overall, our results highlight complex spatial and temporal patterns of MHC-parasite associations, the latter being consistent with Red Queen coevolutionary dynamics.


Assuntos
Arvicolinae , Helmintos , Animais , Arvicolinae/genética , Helmintos/genética , Antígenos de Histocompatibilidade Classe II/genética , Polônia , Polimorfismo Genético , Seleção Genética
4.
Mol Ecol ; 30(4): 1005-1016, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33345416

RESUMO

Hybridization is one of the major factors contributing to the emergence of highly successful parasites. Hybrid vigour can play an important role in this process, but subsequent rounds of recombination in the hybrid population may dilute its effects. Increased fitness of hybrids can, however, be frozen by asexual reproduction. Here, we identify invasion of a 'frozen hybrid' genotype in natural populations of Gyrodactylus turnbulli, a facultatively sexual ectoparasitic flatworm that causes significant damage to its fish host. We resequenced genomes of these parasites infecting guppies from six Trinidad and Tobago populations, and found surprisingly high discrepancy in genome-wide nucleotide diversity between islands. The elevated heterozygosity on Tobago is maintained by predominantly clonal reproduction of hybrids formed from two diverged genomes. Hybridization has been followed by spread of the hybrids across the island, implying a selective advantage compared with native genotypes. Our results thus highlight that a single outcrossing event may be independently sufficient to cause pathogen expansion.


Assuntos
Doenças dos Peixes , Parasitos , Poecilia , Trematódeos , Animais , Poecilia/genética , Trematódeos/genética , Trinidad e Tobago
5.
Mol Ecol ; 30(21): 5588-5604, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415650

RESUMO

Natural host populations differ in their susceptibility to infection by parasites, and these intrapopulation differences are still an incompletely understood component of host-parasite dynamics. In this study, we used controlled infection experiments with wild-caught guppies (Poecilia reticulata) and their ectoparasite Gyrodactylus turnbulli to investigate the roles of local adaptation and host genetic composition (immunogenetic and neutral) in explaining differences in susceptibility to infection. We found differences between our four study host populations that were consistent between two parasite source populations, with no indication of local adaptation by either host or parasite at two tested spatial scales. Greater values of host population genetic variability metrics broadly aligned with lower population mean infection intensity, with the best alignments associated with major histocompatibility complex (MHC) "supertypes". Controlling for intrapopulation differences and potential inbreeding variance, we found a significant negative relationship between individual-level functional MHC variability and infection: fish carrying more MHC supertypes experienced infections of lower severity, with limited evidence for supertype-specific effects. We conclude that population-level differences in host infection susceptibility probably reflect variation in parasite selective pressure and/or host evolutionary potential, underpinned by functional immunogenetic variation.


Assuntos
Doenças dos Peixes , Poecilia , Trematódeos , Adaptação Fisiológica , Animais , Doenças dos Peixes/genética , Interações Hospedeiro-Parasita/genética , Imunogenética , Complexo Principal de Histocompatibilidade/genética , Poecilia/genética
6.
Proc Natl Acad Sci U S A ; 115(7): 1552-1557, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29339521

RESUMO

The major histocompatibility complex (MHC) is crucial to the adaptive immune response of vertebrates and is among the most polymorphic gene families known. Its high diversity is usually attributed to selection imposed by fast-evolving pathogens. Pathogens are thought to evolve to escape recognition by common immune alleles, and, hence, novel MHC alleles, introduced through mutation, recombination, or gene flow, are predicted to give hosts superior resistance. Although this theoretical prediction underpins host-pathogen "Red Queen" coevolution, it has not been demonstrated in the context of natural MHC diversity. Here, we experimentally tested whether novel MHC variants (both alleles and functional "supertypes") increased resistance of guppies (Poecilia reticulata) to a common ectoparasite (Gyrodactylus turnbulli). We used exposure-controlled infection trials with wild-sourced parasites, and Gyrodactylus-naïve host fish that were F2 descendants of crossed wild populations. Hosts carrying MHC variants (alleles or supertypes) that were new to a given parasite population experienced a 35-37% reduction in infection intensity, but the number of MHC variants carried by an individual, analogous to heterozygosity in single-locus systems, was not a significant predictor. Our results provide direct evidence of novel MHC variant advantage, confirming a fundamental mechanism underpinning the exceptional polymorphism of this gene family and highlighting the role of immunogenetic novelty in host-pathogen coevolution.


Assuntos
Ectoparasitoses/veterinária , Evolução Molecular , Interações Hospedeiro-Parasita/genética , Imunogenética , Complexo Principal de Histocompatibilidade/imunologia , Poecilia/genética , Seleção Genética , Animais , Ectoparasitoses/imunologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Complexo Principal de Histocompatibilidade/genética , Poecilia/parasitologia
7.
Mol Ecol ; 29(8): 1494-1507, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32222008

RESUMO

Determining the molecular basis of parasite adaptation to its host is an important component in understanding host-parasite coevolution and the epidemiology of parasitic infections. Here, we investigate short- and long-term adaptive evolution in the eukaryotic parasite Gyrodactylus bullatarudis infecting Caribbean guppies (Poecilia reticulata), by comparing the reference genome of Tobagonian G. bullatarudis with other Platyhelminthes, and by analysing resequenced samples from local Trinidadian populations. At the macroevolutionary timescale, we observed duplication of G-protein and serine proteases genes, which are probably important in host-parasite arms races. Serine protease also showed strong evidence of ongoing, diversifying selection at the microevolutionary timescale. Furthermore, our analyses revealed that a hybridization event, involving two divergent genomes, followed by recombination has dramatically affected the genetic composition of Trinidadian populations. The recombinant genotypes invaded Trinidad and replaced local parasites in all populations. We localized more than 300 genes in regions fixed in local populations for variants of different origin, possibly due to diversifying selection pressure from local host populations. In addition, around 70 genes were localized in regions identified as heterozygous in some, but not all, individuals. This pattern is consistent with a very recent spread of recombinant parasites. Overall, our results are consistent with the idea that recombination between divergent genomes can result in particularly successful parasites.


Assuntos
Doenças dos Peixes , Parasitos , Poecilia , Animais , Região do Caribe , Duplicação Gênica , Humanos , Poecilia/genética , Recombinação Genética , Trinidad e Tobago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA