RESUMO
BACKGROUND: Conditioning bifunctional agent, busulfan, is commonly used on children before hematopoietic stem cell transplantation. Currently, at the Ramathibodi hospital, Bangkok, Thailand, initial dosing is calculated according to age and body surface area, and 7 samples per day are used for therapeutic drug monitoring (TDM). This study aimed to identify the best strategies for individual dosages a priori from patient characteristics and a posteriori based on TDM. METHODS: The pharmacokinetic data set consisted of 2018 plasma concentrations measured in 135 Thai (n = 135) pediatric patients (median age = 8 years) and were analyzed using a population approach. RESULTS: Body weight, presence of malignant disease, and genetic polymorphism of Glutathione S-transferase Alpha-1 (GSTA1) were predictors of clearance. The optimum sampling times for TDM concentration measurements were 0.25, 2, and 5 hours after a 3-hour infusion. This was sufficient to obtain a Bayesian estimate of clearance a posteriori. Simulations showed the poor performance of a priori formula-based dose calculations with 90% of patients demonstrating a 69%-151% exposure interval around the target. This interval shrank to 85%-124% if TDM was carried out only at day 1 and to 90%-116% with TDM at days 1 and 3. CONCLUSIONS: This comprehensive study reinforces the interest of TDM in managing interindividual variability in busulfan exposure. Therapeutic drug monitoring can reliably be implemented from 3 samples using the Bayesian approach, preferably over 2 days. If using the latter is not possible, the formulas developed herein could present an alternative in Thai patients.
RESUMO
Hyperbilirubinemia is the main mechanism that causes neonatal jaundice, and genetics is one of the risk factors of hyperbilirubinemia. Therefore, this study aims to explore the correlation between two genes, UGT1A1 and SLCO1B1, and hyperbilirubinemia in Thai neonates. One hundred thirty seven neonates were recruited from Division of Clinical Chemistry, Ramathibodi Hospital. UGT1A1*28 and *6 were determined by pyrosequencing whereas, SLCO1B1 388A > G and 521 T > C genetic variants were determined by TaqMan® real-time polymerase chain reaction. Neonates carrying with homozygous (AA) and heterozygous (GA) variants in UGT1A1*6 were significantly related to hyperbilirubinemia development compared with wild type (GG; P < 0.001). To the combined of UGT1A1, total bilirubin levels in homozygous variant were higher significantly than heterozygous variant and wild type (P = 0.002, P = 0.003, respectively). Moreover, SLCO1B1 combination was significant differences between the hyperbilirubinemia and the control group (P = 0.041). SLCO1B1 521 T > C variant provide protection for Thai neonatal hyperbilirubinemia (P = 0.041). There are no significant differences in UGT1A1*28 and SLCO1B1 388A > G for the different severity of hyperbilirubinemia. The combined UGT1A1*28 and *6 polymorphism is a strong risk factor for the development of severe hyperbilirubinemia in Thai neonates. Therefore, we suggest neonates with this gene should be closely observed to avoid higher severities of bilirubin.
Assuntos
Hiperbilirrubinemia Neonatal , Icterícia Neonatal , Bilirrubina , Glucuronosiltransferase , Humanos , Hiperbilirrubinemia Neonatal/genética , Recém-Nascido , Icterícia Neonatal/complicações , Icterícia Neonatal/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Polimorfismo Genético , TailândiaRESUMO
Aromatic antiepileptic drugs (AEDs)-induced cutaneous adverse drug reactions (cADRs) add up to the limited use of the AEDs in the treatment and prevention of seizures. Human leukocyte antigen-B (HLA-B) alleles have been linked to AEDs-induced cADRs. We investigated the association between cADRs (including Stevens-Johnson syndrome; SJS/toxic epidermal necrolysis; TEN, drug reaction with eosinophilia and systemic symptoms; DRESS, and Maculopapular eruption; MPE) caused by AEDs (phenytoin, carbamazepine, lamotrigine, phenobarbital and oxcarbazepine) and HLA-B alleles in Thai population. Through the case-control study, 166 patients with AEDs-induced cADRs, 426 AEDs-tolerant patients (AEDs-tolerant controls), and 470 healthy subjects (Thai population) were collected. The HLA genotypes were detected using the polymerase chain reaction-sequence specific oligonucleotide probe (PCR-SSOP) method. We also performed a meta-analysis with these data and other populations. The carrier rate of HLA-B*15:02 was significantly different between AEDs-induced cADRs group and AEDs-tolerant group (Odds ratio; OR 4.28, 95% Confidence interval; CI 2.64-6.95, p < 0.001), AEDs-induced cADRs group and Thai population (OR 2.15, 95%CI 1.41-3.29, p < 0.001). In meta-analysis showed the strong association HLA-B*15:02 with AEDs-induced cADRs (OR 4.77, 95%CI 1.79-12.73, p < 0.001). Furthermore, HLA-B*15:02 was associated with SJS/TEN induced by AEDs (OR 10.28, 95%CI 6.50-16.28, p < 0.001) Phenytoin (OR 4.12, 95%CI 1.77-9.59, p = 0.001) and carbamazepine (OR 137.69, 95%CI 50.97-371.98, p < 0.001). This study demonstrated that genetic association for AEDs-induced cADRs was phenotype-specific. A strong association between HLA-B*15:02 and AEDs-induced SJS/TEN was demonstrated with an OR of 10.79 (95%CI 5.50-21.16, p < 0.001) when compared with AEDs-tolerant group. On the other hand, the carrier rates of HLA-B*08:01, HLA-B*13:01, and HLA-B*56:02 were significantly higher in the DRESS group compared with the AEDs-tolerant group (p = 0.029, 0.007, and 0.017, respectively). The HLA-B*15:02 allele may represent a risk factor for AEDs-induced cADRs.
Assuntos
Anticonvulsivantes/efeitos adversos , Toxidermias/genética , Antígenos HLA-B/genética , Compostos Heterocíclicos/efeitos adversos , Estudos de Casos e Controles , Toxidermias/diagnóstico , Toxidermias/imunologia , Frequência do Gene , Genótipo , Humanos , Medição de Risco , Fatores de Risco , TailândiaRESUMO
BACKGROUND: The use of Atypical antipsychotics (AAPs) is related to metabolic disturbances, which put psychiatric patients at risk for cardiovascular morbidity and mortality. Evidence is emerging of genetic risk factors. The HTR2C gene is an essential candidate in pharmacogenetic studies of antipsychotic-induced metabolic effects. Nevertheless, there were inconsistent results among studies. OBJECTIVE: To investigate the relationship between -759C/T, functional polymorphism of the HTR2C gene and metabolic adverse effects in Thai psychiatric patients treated with risperidone monotherapy. METHOD: In this cross-sectional study, 108 psychiatric patients treated with risperidone monotherapy for ≥3 months were recruited. Anthropometric measurements and laboratory tests were obtained upon enrollment and history of treatment was reviewed from medical records. Weight gain was defined as an increase ≥7% of baseline weight. Metabolic syndrome was evaluated according to the 2005 International Diabetes Federation (IDF) Asia criteria. The -759C/T, polymorphism was genotyped. The associations between -759C/T polymorphism and metabolic side effects were analyzed. Multiple logistic regression was used for determining potential confounders. RESULTS: Neither weight gain nor metabolic syndrome was significantly associated with -759C/T allelic and genotype variants of HTR2C. However, T allele of -759C/T polymorphism significantly associated with the hypertension. This association was not affected by possible confounding factors such as gender, risperidone dose, duration of treatment and family history of hypertension. CONCLUSION: Our findings suggest that psychiatric patients with T allele of -759C/T polymorphism may be at higher risk for hypertension. Further study with prospective design with larger patient groups are needed.
Assuntos
Risperidona , Esquizofrenia , Estudos Transversais , Humanos , Polimorfismo Genético , Estudos Prospectivos , Receptor 5-HT2C de Serotonina/genética , Risperidona/efeitos adversos , TailândiaRESUMO
OBJECTIVE: This study aimed to describe the genetic and clinical risk factors associated with phenytoin-induced cutaneous adverse drug reactions (PHT-induced cADRs) in Thai patients. METHOD: A retrospective case-control study was conducted among 88 PHT- cADRs (25 SJS/TEN, 37 DRESS/DIHS and 26 MPE) compared to 70 PHT-tolerant controls during 2008-2017. Genotyping was performed by Taqman RT-PCR (EPHX1 337 T > C, EPHX1 416A > G and CYP2C9*3), pyrosequencing (UGT1A1*28, UGT1A1*6) and polymerase chain reaction-sequence-specific oligonucleotide probe (HLA-B). Chi-squared test and binary logistic regression were used to identify factors associated with PHT-cADRs. RESULTS: Multivariate analysis showed that HLA-B*46:01 was significantly associated with all PHT-induced cADRs (OR 2.341; 95% CI, 1.078-5.084; P = .032). Age of ≥60 years showed a significant association with PHT-induced SJS/TEN (OR 3.600; 95% CI, 1.214-10.672; P = .021). CYP2C9*3 was almost reaching statistically associated with an increased risk of PHT-induced SJS/TEN (OR 4.800; 95% CI, 0.960-23.990; P = .056). While HLA-B*56:02/04 was found to have a significant association with PHT-induced DRESS/DIHS (OR 29.312; 95% CI, 1.213-707.994; P = .038). Moreover, female gender and HLA-B*40:01 were associated with an increased risk of PHT-induced MPE at OR 5.734; 95% CI, 0.910-58.351; P = .042 and OR 3.647; 95% CI, 1.193-11.147; P = .023, respectively. CONCLUSION: Both clinical (advanced age, female gender) and genetic factors (HLA-B*46:01, CYP2C9*3, HLA-B*56:02/04 and HLA-B*40:01) contributed to the risk of PHT-induced cADRs. Further studies with larger sample size may be warranted to confirm these findings and also the influence of EPHX1 gene.
Assuntos
Anticonvulsivantes/efeitos adversos , Fenitoína/efeitos adversos , Síndrome de Stevens-Johnson/epidemiologia , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais , Síndrome de Stevens-Johnson/etiologia , Síndrome de Stevens-Johnson/genética , Centros de Atenção Terciária , Tailândia/epidemiologiaRESUMO
The aim of this study was to investigate the association of drug-metabolizing enzyme and transporter (DMET) polymorphisms with the risperidone-induced prolactin response using an overlapping gene model between serum prolactin level and hyperprolactinemia in autism spectrum disorder (ASD) patients. Eighty-four ASD patients who were receiving risperidone for at least 1 month were recruited and then assigned to either the normal prolactin group or the hyperprolactinemia group based on their serum prolactin level. The genotype profile of 1936 (1931 single nucleotide polymorphisms (SNPs) and 5 copy number variation (CNVs) drug metabolism markers was obtained using the Affymetrix DMET Plus GeneChip microarray platform. Genotypes of SNPs used to test the accuracy of DMET genotype profiling were determined using TaqMan SNP Genotyping Assay kits. Eighty-four patients were selected for the allelic association study after microarray analyses (51 in the normal prolactin group, and 33 in the hyperprolactinemia group). An overlapping allelic association analysis of both analyses discovered five DMET SNPs with a suggestive association (P < 0.05) with risperidone-induced prolactin response. Three UGT1A1 SNPs (UGT1A1*80c.-364C > T, UGT1A1*93 c.-3156G > A, and UGT1A1 c.-2950A > G, showed a suggestive association with the risperidone-induced prolactin response and found to be in complete linkage disequilibrium (D' value of 1). In this DMET microarray platform, we found three UGT1A1 variants with suggestive evidences of association with the risperidone-induced prolactin response both measured by hyperprolactinemia and by prolactin level. However, due to the lack of validation studies confirmation and further exploration are needed in future pharmacogenomic studies.
Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Glucuronosiltransferase/genética , Hiperprolactinemia/induzido quimicamente , Hiperprolactinemia/genética , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Prolactina/sangue , Risperidona/efeitos adversos , Fatores Etários , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Criança , Feminino , Predisposição Genética para Doença , Glucuronosiltransferase/metabolismo , Humanos , Hiperprolactinemia/sangue , Hiperprolactinemia/enzimologia , Desequilíbrio de Ligação , Masculino , Farmacogenética , Fenótipo , Estudos Retrospectivos , Fatores de Risco , Risperidona/metabolismo , Tailândia , Resultado do TratamentoRESUMO
BACKGROUND: Irinotecan (CPT-11) is chemotherapy used mainly in the metastatic colorectal cancer. The purpose of this study was to develop and validate the LC-MS/MS for the simultaneous determination of CPT-11, SN-38, and SN-38G. METHODS: A 100 µL of plasma was prepared after protein precipitation and analyzed on a C18 column using 0.1% acetic acid in water and 0.1% acetic acid in acetonitrile as mobile phases. The mass spectrometer worked with multiple reaction monitoring (MRM) in positive scan mode. The standard curves were linear on a concentration range of 5-10 000 ng/mL for CPT-11, 5-1000 ng/mL for SN-38, and 8-1000 ng/mL for SN-38G. RESULTS: In this assay, the intra and interday precision consisted of ≤9.11% and ≤11.29% for CPT-11, ≤8.70% and 8.31% for SN-38, and ≤9.90 and 9.64% for SN-38G. CONCLUSION: This method was successfully used to quantify CPT-11, SN-38, and SN-38G and applied to a pharmacokinetic study.
Assuntos
Antineoplásicos Fitogênicos/sangue , Camptotecina/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Neoplasias Colorretais/tratamento farmacológico , Glucuronídeos/sangue , Espectrometria de Massas em Tandem/métodos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Camptotecina/sangue , Camptotecina/química , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Monitoramento de Medicamentos , Glucuronídeos/química , Glucuronídeos/farmacocinética , Humanos , Irinotecano , Medicina de Precisão , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Voriconazole (VRZ) is a triazole antifungal used for treatment of invasive fungal infection, which is a life-threatening condition. Therapeutic drug monitoring is recommended for identifying the optimal dose in patients who have hepatic/renal impairment or reduced function of the CYP2C19 metabolizing enzyme. METHODS: One hundred microliters of sample plasma was extracted by protein precipitated with 200 µl of acetonitrile containing fluconazole as internal standard (IS). After vortexing and centrifugation, supernatant was dried and reconstituted with 100 µl of mobile phase (ACN: 0.1% formic acid in 10 mM Ammonium acetate) (50:50 v/v) before injected. The column was C18, 2.7 µm, 3.0 × 50 mm at flow rate of 0.5 ml/min with retention time of 0.5 and 0.75 min for VRZ and IS, respectively. The tandem mass spectrometer was set in multiple reactions monitoring (MRM) mode with the following transition; VRZ m/z 350.10â281.10 and 307.20â220.20 (IS). RESULTS: The accuracy and precision inter- and intra-day were less than 9%, over the range 0.05-10 µg/ml. The linearity was consistent (r2 = 0.9987) and recovery was more than 85.0% for both analyses. CONCLUSION: This method is applicable for routine monitoring of patients' VRZ plasma level with fast and accurate runtime to assess CYP2C19 genotype.
Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Voriconazol/análise , Calibragem , Citocromo P-450 CYP2C19/metabolismo , Humanos , Fenótipo , Padrões de Referência , Reprodutibilidade dos Testes , Voriconazol/sangue , Voriconazol/químicaRESUMO
OBJECTIVE: The aim of the study was to identify the impact of pharmacogenetic markers associated with prolactin concentration in risperidone-treated children and adolescents with autism spectrum disorders. METHODS: One hundred forty-seven children and adolescents with autism, aged 3 to 19 years, received risperidone. The clinical data of patients were recorded from medical records. Prolactin levels were measured by chemiluminescence immunoassay. Three CYP2D6 single nucleotide polymorphisms, CYP2D6*4 (1846G>A), *10 (100C>T), and *41 (2988G>A), 1 gene deletion (*5), and DRD2 Taq1A (rs1800497) polymorphism were genotyped by TaqMan real-time polymerase chain reaction. RESULTS: The 3 common allelic frequencies were CYP2D6*10 (55.10%), *1 (32.65%), and *5 (6.12%), respectively. Patients were grouped according to their CYP2D6 genotypes. There was no significant correlation between the concentrations of prolactin among the CYP2D6 genotypes. In addition, there were no statistical differences in the prolactin response among the CYP2D6-predicted phenotypes of extensive metabolizer and intermediate metabolizer. The DRD2 genotype frequencies were Taq1A A2A2 (38.77%), A1A2 (41.50%), and A1A1 (19.73%), respectively. There were statistically significant differences in prolactin level of patients among the 3 groups (P = 0.033). The median prolactin level in patients with DRD2 Taq1A A2A2 (17.80 ng/mL) was significantly higher than A1A2 (17.10 ng/mL) and A1A1 (12.70 ng/mL). CONCLUSIONS: DRD2 Taq1A A2A2 polymorphisms may play a significant role in the hyperprolactinemia- associated with risperidone treatment in children and adolescent with autism spectrum disorder. Many drugs used chronically in psychiatric diseases exert their effects mainly through the dopamine D2 receptor. It is therefore possible that these drugs could alter the expression of any dopamine receptor, thus affecting the pharmacodynamics characteristics and toxicity of drug substrates during pharmacotherapy.
Assuntos
Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/genética , Citocromo P-450 CYP2D6/genética , Prolactina/sangue , Receptores de Dopamina D2/genética , Risperidona/uso terapêutico , Adolescente , Transtorno do Espectro Autista/tratamento farmacológico , Criança , Pré-Escolar , Estudos Transversais , Feminino , Marcadores Genéticos/genética , Humanos , Masculino , Farmacogenética , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos , Tailândia/epidemiologia , Resultado do Tratamento , Adulto JovemRESUMO
BACKGROUND: UGT1A1 is a polymorphic enzyme that has been associated with irinotecan drug metabolisms. We developed a pyrosequencing method to detect allele frequency and genotype of UGT1A1 polymorphisms (UGT1A1*28 and UGT1A1*6) in Thai colorectal cancer patients. METHOD: A pyrosequencing method was designed to determine UGT1A1 genetic polymorphisms including UGT1A1*28 (A[TA]7TAA) and UGT1A1*6 (211G>A) in 91 Thai colorectal cancers. RESULT: Genotyping by the pyrosequencing technique was 100% concordant with capillary electrophoresis sequencing. The allele frequencies for UGT1A1 genetic polymorphisms were *1/*1 (54.95%), *1/*6 (13.19%), *1/*28 (25.27%), *28/*6 (4.40%), and *28/*28 (2.20%). No homozygous mutation UGT1A1*6 was found in our population. CONCLUSIONS: We developed a rapid, reliable, more cost-effective, and simple assay to detect UGT1A1 genetic polymorphisms in routine practice before initiating irinotecan therapy. The UGT1A1*28 and UGT1A1*6 alleles were found to be similar in the Asian populations.
Assuntos
Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Glucuronosiltransferase/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Software , TailândiaRESUMO
BACKGROUND: Risperidone (RIS) is a widely used atypical antipsychotic drug. We developed and validated a sensitive and accurate LC-MS/MS method, which requires a small-volume of plasma and small-volume injection for measurement of RIS levels in ASD pediatric patients. We also investigated the relationship between RIS levels and RIS dosages, including prolactin levels. METHOD: Blood samples were processed by protein precipitation extraction. Only 1 µl of sample was injected. Plasma samples were separated on a C18 column (4.6 cm × 50 mm; 1.8 µm particle size). Detection was by MS-MS with an analytical run time of 6 min. RESULTS: The inter-day accuracy of RIS was 101.33-107.68% and 95.24-103.67% for 9-OH-RIS. The inter-day precision of RIS was ≤7.27% CV and ≤7.41% CV for 9-OH-RIS. The extraction recovery of RIS and 9-OH-RIS were 95.01 ± 7.31-112.62 ± 7.50% and 90.27 ± 11.15-114.00 ± 10.35%, respectively. This method was applied in the therapeutic drug monitoring of ASD pediatric patients. Higher RIS dosage has a tendency to produce higher RIS plasma levels. The high RIS plasma levels have a tendency to produce hyperprolactinemia. CONCLUSION: The determination of RIS in individual patients might be clinically useful for monitoring and prediction of treatment response.
Assuntos
Antipsicóticos/sangue , Transtorno do Espectro Autista/sangue , Cromatografia Líquida , Monitoramento de Medicamentos/métodos , Palmitato de Paliperidona/sangue , Risperidona/sangue , Espectrometria de Massas em Tandem , Antipsicóticos/uso terapêutico , Transtorno do Espectro Autista/tratamento farmacológico , Feminino , Humanos , Masculino , Palmitato de Paliperidona/uso terapêutico , Risperidona/uso terapêutico , Estatística como Assunto , Estatísticas não ParamétricasRESUMO
Drug hypersensitivity reactions affect many patients leading to a variety of clinical manifestations, mainly the cutaneous adverse reactions ranging from milder skin reactions to severe cutaneous adverse reactions (SCARs). Hypersensitivity reactions are unpredictable and are thought to have an underlying genetic etiology, as suggested by case reports. With the scientific knowledge of pharmacogenomics and the evidence based on the genomic testing, it is possible to identify genetic predisposing factors for these serious adverse reactions and personalize drug therapy. The most significant genetic associations have been identified in the major histocompatibility complex (MHC) genes encoded for human leukocyte antigens (HLA) alleles. Drugs associated with hypersensitivity reactions with strong genetic predisposing factors include abacavir, nevirapine, carbamazepine, and allopurinol. In this review, strong genetic associations of drug-induced SCARs are highlighted so as to improve drug safety and help to select optimal drugs for individual patients. Further investigation, however, is essential for the characterization of other genes involved in the hypersensitivity reactions with the use of several genetic strategies and technologies.
Assuntos
Alelos , Toxidermias , Predisposição Genética para Doença , Antígenos HLA , Farmacogenética , Pele/imunologia , Toxidermias/genética , Toxidermias/imunologia , Toxidermias/patologia , Feminino , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Masculino , Pele/patologiaRESUMO
BACKGROUND: The prevalence of metabolic-associated fatty liver disease (MAFLD) is a growing public health issue in people living with human immunodeficiency virus (PLWH). However, the pathophysiology of MAFLD is still unknown, and the role of genetic variables is only now becoming evident. AIM: To evaluate the associations of gene-polymorphism-related MAFLD in PLWH. METHODS: The study employed transient elastography with a controlled attenuation parameter ≥ 248 dB/m to identify MAFLD in patients from a Super Tertiary Hospital in central Thailand. Candidate single-nucleotide polymorphisms (SNPs) were genotyped using TaqMan® MGB probe 5' nuclease assays for seven MAFLD-related genes. Statistical analyses included SNP frequency analysis, Fisher's Exact and Chi-square tests, odds ratio calculations, and multivariable logistic regression. RESULTS: The G-allele carriers of PNPLA3 (rs738409) exhibited a two-fold rise in MAFLD, increasing by 2.5 times in MAFLD with human immunodeficiency virus infection. The clinical features and genetic patterns imply that LEP rs7799039 A-allele carriers had a nine times (P = 0.001) more significant chance of developing aberrant triglyceride among PLWH. CONCLUSION: The current study shows an association between PNPLA3 rs738409 and LEP rs7799039 with MAFLD in PLWH.
RESUMO
Background: The two common methylenetetrahydrofolate reductase (MTHFR) polymorphisms 677G>A and 1298A>C may have been affecting 5-FU toxicity in cancer patients for decades. Drug efficacy has also been shown by previous studies to be affected. In this study, we investigated the effects of these polymorphisms on 5-FU hematological toxicity and treatment efficacy, to provide enhanced pharmacological treatment for cancer patients. Methods: This is a retrospective study involving 52 Thai colorectal cancer patients who were treated with 5-FU based therapy, using TaqMAN real-time PCR to genotype the MTHFR polymorphisms (677G>A and 1298A>C). The toxicity and response rate were assessed using standardized measures. Results: Neutropenia was significantly more likely to be experienced (P=0.049, OR=7.286, 95% CI=0.697-76.181) by patients with the MTHFR 677G>A polymorphism, in the same way as leukopenia (P =0.036, OR=3.333, 95%CI=2.183-5.090) and thrombocytopenia (P<0.001, OR=3.917, 95%CI=2.404-6.382). The MTHFR 1298A>C polymorphism had no statistical association with hematological toxicity in 5-FU treatment. The response rate to 5-FU was not significantly affected by these two polymorphisms. Conclusion: The MTHFR polymorphism 677G>A is a significant risk factor for developing leukopenia, neutropenia and thrombocytopenia as toxic effects of 5-FU therapy in cancer patients. Therefore, patients receiving 5-FU-based therapy should be aware of their polymorphisms as one risk factor for experiencing severe toxicity.
RESUMO
Background: The HLA-B is the most polymorphic gene, play a crucial role in drug-induced hypersensitivity reactions. There is a lot of evidence associating several risk alleles to life-threatening adverse drug reactions, and a few of them have been approved as valid biomarkers for predicting life-threatening hypersensitivity reactions. Objectives: The objective of this present study is to present the progression of HLA-B pharmacogenomics (PGx) testing in the Thai population during a 10-year period, from 2011 to 2020. Methods: This was a retrospective observational cohort study conducted at the Faculty of Medicine Ramathibodi Hospital. Overall, 13,985 eligible patients who were tested for HLA-B risk alleles between periods of 2011-2020 at the study site were included in this study. Results: The HLA PGx testing has been increasing year by year tremendously, 94 HLA-B testing was done in 2011; this has been raised to 2,880 in 2020. Carbamazepine (n = 4,069, 33%), allopurinol (n = 4,675, 38%), and abacavir (n = 3,246, 26%) were the most common drugs for which the HLA-B genotyping was performed. HLA-B*13:01, HLA-B*15:02 and HLA-B*58:01 are highly frequent, HLA-B*51:01 and HLA-B*57:01 are moderately frequent alleles that are being associated with drug induced hypersensitivity. HLA-B*59:01 and HLA-B*38:01 theses alleles are rare but has been reported with drug induced toxicity. Most of the samples were from state hospital (50%), 36% from private clinical laboratories and 14% from private hospitals. Conclusion: According to this study, HLA-B PGx testing is increasing substantially in Thailand year after year. The advancement of research in this field, increased physician awareness of PGx, and government and insurance scheme reimbursement assistance could all be factors. Incorporating PGx data, along with other clinical and non-clinical data, into clinical decision support systems (CDS) and national formularies, on the other hand, would assist prescribers in prioritizing therapy for their patients. This will also aid in the prediction and prevention of serious adverse drug reactions.
RESUMO
Busulfan is widely used as a chemotherapy treatment before hematopoietic stem-cell transplantation (HSCT). However, the response of busulfan is highly variable and unpredictable, whereby the pharmacogenetic interference of glutathione S-transferase (GST) has strong evidence in Caucasians and some adult Asians but not in pediatric Asian patients. This study was aimed at investigating the associations of GST genetic polymorphisms with variations in the pharmacokinetic (PK) properties of busulfan in pediatric Asian patients. This retrospective cohort study recruited 92 pediatric patients. The polymorphism of GSTA1 was genotyped by Sanger sequencing, and GSTM1 and GSTP1 were genotyped by real-time PCR. Drug concentration and PK estimation were identified using an LC-MS/MS method and a noncompartmental model. Statistical analysis was performed by R software. Out of 92 patients, 48 (53%) were males, the mean age was 8.4 ± 5.12 years old, and the average weight was 26.52 ± 14.75 kg. The allele frequencies of GSTA1*B and of GSTM1 and GSTP1* deletions were 16.9%, 68.5%, and 21.2%, respectively. Patients with GSTA1*B had a statistically significant impact on the PK of busulfan, whereas those with GSTM1 and GSTP1 did not (p > 0.05). The carriers of GSTA1*B showed a significant difference compared to noncarriers in terms of t1/2 (for first dose: 161.9 vs. 134.3 min, p = 0.0016; for second dose: 156.1 vs. 129.8, p = 0.012), CL (88.74 vs. 124.23 mL/min, p = 0.0089), Cmax (4232.6 vs. 3675.5 ng/mL, p = 0.0021), and AUC (5310.6 vs. 4177.1 µM/min, p = 0.00033). The augmentation of AUC was around 27.1% in patients carrying the GSTA1*B variant. The GSTA1 polymorphism was significantly associated with variations of the pharmacokinetic properties of busulfan treatment in pediatric Asian patients.
RESUMO
BACKGROUND: Patients with psychotic disorders who receive atypical antipsychotic drugs often develop metabolic abnormalities. The sterol regulatory element-binding factor 2 (SREBF2) gene and insulin-induced gene (INSIG) have important roles in lipid metabolism. A previous study indicated that risperidone stimulated both lipogenesis and cholesterogenesis through activation of SREBP2 expression and inhibition of INSIG2. The SREBF2 gene and INSIG2 polymorphisms have been reported to be associated with metabolic abnormalities. OBJECTIVE: To investigate the association of the SREBF2 gene (rs1052717, rs2267439, and rs2267443) and INSIG2 (rs7566605, rs11123469, and rs17587100) polymorphisms and the presence of obesity and dyslipidemia in Thai psychotic disorder patients treated with risperidone. METHODS: All 113 psychiatric patients using risperidone were evaluated for their lipid profile and screened for obesity criteria. We genotyped the SREBF2 gene and INSIG2 polymorphisms using TaqMan real-time polymerase chain reaction. RESULTS: None of the studied SREBF2 gene and INSIG2 SNPs were associated with obesity in Thai psychotic disorder patients receiving risperidone. Nonetheless, the SREBF2 rs2267443 (G/A) A-allele carriers were at a higher risk for hypertriglyceridemia, whereas the INSIG2 rs11123469 (T/C) C-allele carriers had a lower risk for hypertriglyceridemia, after being adjusted for clinical characteristics using multiple logistic regression. CONCLUSIONS: Our findings suggest that the SREBF2 gene rs2267443 (G/A) and the INSIG2 rs11123469 (T/C) polymorphisms are associated with dyslipidemia in Thai psychotic disorder patients treated with risperidone. Further studies with prospective designs and larger patient groups are needed.
RESUMO
PURPOSE: Plasma efavirenz (EFV) concentrations within therapeutic levels are essential to successfully treat patients suffering from human immunodeficiency virus (HIV) type 1. In addition to the drug-metabolizing enzyme CYP2B6, other phase II drug-metabolizing enzymes and transporters may have an important role in the pharmacokinetics of EFV. Thus, the influence of phase II drug-metabolizing enzymes and drug transporters on plasma EFV levels was investigated in Thai HIV patients receiving EFV. PATIENTS AND METHODS: Genotyping was performed by TaqMan® real-time PCR in 149 HIV-infected Thai adults, and plasma efavirenz concentration was measured by a validated high-performance liquid chromatography in 12 hours after dosing steady-state plasma samples at week 12 and 24. RESULTS: Patients with three or more copies of SULT1A1 had significantly lower median plasma EFV concentrations than those carrying two copies at week 12 (p=0.046) and SULT1A1*2 (c.638G>A) carriers had significantly lower median plasma EFV concentrations compared to those not carrying the variant at week 24 (p=0.048). However, no significant association was found after adjusting for CYP2B6 genotype. CONCLUSION: Genetic variation in a combination of SULT1A1*2 and SULT1A1 copy number may contribute to variability in EFV metabolism and thereby may impact drug response. The influence of a combination between the SULT1A1 and CYP2B6 genotype on EFV pharmacokinetics should be further investigated in a larger study population.
RESUMO
Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, CYP2C19*6, CYP2C19*17, and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2, CYP2C19*3, CYP2C19*6, and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P < 0.001). The frequency of the CYP2C19*17 allele was significantly higher in the Southern Thai population (P < 0.001). Our results may provide an understanding of the ethnic differences in drug responses and support for the utilization of pharmacogenomics testing in clinical practice.
Assuntos
Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/genética , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Fenótipo , TailândiaRESUMO
We investigated the association between genetic variations in pharmacodynamic genes and risperidone-induced increased prolactin levels in children and adolescents with autism spectrum disorder (ASD). In a retrospective study, variants of pharmacodynamic genes were analyzed in 124 ASD patients treated with a risperidone regimen for at least 3 months. To simplify genotype interpretation, we created an algorithm to calculate the dopamine D2 receptor (DRD2) gene genetic risk score. There was no relationship between prolactin levels and single SNPs. However, the H1/H3 diplotype (A2/A2-Cin/Cin-A/G) of DRD2/ankyrin repeat and kinase domain containing 1 (ANKK1) Taq1A, DRD2 -141C indel, and DRD2 -141A>G, which had a genetic risk score of 5.5, was associated with the highest median prolactin levels (23 ng/ml). As the dose-corrected plasma levels of risperidone, 9-OH-risperidone, and the active moiety increased, prolactin levels in patients carrying the H1/H3 diplotype were significantly higher than those of the other diplotypes. DRD2 diplotypes showed significantly high prolactin levels as plasma risperidone levels increased. Lower levels of prolactin were detected in patients who responded to risperidone. This is the first system for describing DRD2 haplotypes using genetic risk scores based on their protein expression. Clinicians should consider using pharmacogenetic-based decision-making in clinical practice to prevent prolactin increase.