Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 144(5): 1242-1253.e7, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31082457

RESUMO

BACKGROUND: A defective epithelial barrier is found in patients with allergic rhinitis (AR) and asthma; however, the underlying mechanisms remain poorly understood. Histone deacetylase (HDAC) activity has been identified as a crucial driver of allergic inflammation and tight junction dysfunction. OBJECTIVE: We investigated whether HDAC activity has been altered in patients with AR and in a mouse model of house dust mite (HDM)-induced allergic asthma and whether it contributed to epithelial barrier dysfunction. METHODS: Primary nasal epithelial cells of control subjects and patients with AR were cultured at the air-liquid interface to study transepithelial electrical resistance and paracellular flux of fluorescein isothiocyanate-dextran (4 kDa) together with mRNA expression and immunofluorescence staining of tight junctions. Air-liquid interface cultures were stimulated with different concentrations of JNJ-26481585, a broad-spectrum HDAC inhibitor. In vivo the effect of JNJ-26481585 on mucosal permeability and tight junction function was evaluated in a mouse model of HDM-induced allergic airway inflammation. RESULTS: General HDAC activity was greater in nasal epithelial cells of patients with AR and correlated inversely with epithelial integrity. Treatment of nasal epithelial cells with JNJ-26481585 restored epithelial integrity by promoting tight junction expression and protein reorganization. HDM-sensitized mice were treated with JNJ-26481585 to demonstrate the in vivo role of HDACs. Treated mice did not have allergic airway inflammation and had no bronchial hyperreactivity. Moreover, JNJ-26481585 treatment restored nasal mucosal function by promoting tight junction expression. CONCLUSION: Our findings identify increased HDAC activity as a potential tissue-injury mechanism responsible for dysregulated epithelial cell repair, leading to defective epithelial barriers in AR. Blocking HDAC activity is a promising novel target for therapeutic intervention in patients with airway diseases.


Assuntos
Asma/metabolismo , Histona Desacetilases/metabolismo , Mucosa Nasal/metabolismo , Rinite Alérgica/metabolismo , Junções Íntimas/metabolismo , Animais , Antígenos de Dermatophagoides/imunologia , Células Cultivadas , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Nasal/patologia , Junções Íntimas/patologia
2.
Allergy ; 74(7): 1292-1306, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30644567

RESUMO

BACKGROUND: The market of mobile health (mHealth) technology is rapidly evolving, making new mobile technologies potentially available for healthcare systems. Patient empowerment through self-monitoring of symptoms, shared decision making with the physician, and easily accessible education are important features extending the reach of mHealth technology beyond traditional care. METHODS: Two digital distribution platforms (Apple App Store and Google Play Store) were searched for currently available mobile applications (apps) for patients with chronic respiratory diseases (CRDs). A new index (score ranging from 0 to 10) was developed to assess the potential of apps as a tool to empower patients through mobile technology (based on self-monitoring, personalized feedback, and patient education app features). RESULTS: One hundred and twelve apps were retained for analysis and could be classified in 5 categories: Asthma (n = 71), COPD (n = 15), Asthma and COPD (n = 15), Rhinitis and Asthma (n = 5), and Rhinosinusitis (n = 6). Eighty percent were developed by medical technology companies compared to 18% by medical doctors and 2% by pharmaceutical companies. Two-thirds of apps allow disease self-monitoring, whereas over half of apps provide patient feedback through graphs. Sixty percent of apps contain easily accessible patient education material. Only three percent of apps reach a score of ≥7 on the newly designed patient empowerment index. CONCLUSIONS: A variety of apps are available for patients with CRDs of which only few were developed by or jointly with medical doctors. The majority of these apps include self-monitoring tools, but only few also provide personalized feedback, which is needed to adopt these apps into daily care.


Assuntos
Doenças Respiratórias/epidemiologia , Telemedicina/métodos , Gerenciamento Clínico , Humanos , Aplicativos Móveis , Educação de Pacientes como Assunto , Seleção de Pacientes , Vigilância em Saúde Pública , Doenças Respiratórias/diagnóstico , Doenças Respiratórias/terapia , Telemetria
3.
Allergy ; 74(5): 899-909, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30589936

RESUMO

BACKGROUND: Histamine is an important immunomodulator influencing both the innate and adaptive immune system. Certain host cells express the histidine decarboxylase enzyme (HDC), which is responsible for catalysing the decarboxylation of histidine to histamine. We and others have shown that bacterial strains can also express HDC and secrete histamine; however, the influence of bacterial-derived histamine on the host immune responses distant to the gut is unclear. METHODS: The Escherichia coli BL21 (E coli BL21) strain was genetically modified to express the Morganella morganii (M morganii)-derived HDC gene (E coli BL21_HTW). E coli BL21 and E coli BL21_HTW were gavaged to ovalbumin (OVA) sensitized and challenged mice to investigate the effect of bacterial-derived histamine on lung inflammatory responses. RESULTS: Oral administration of E coli BL21_HTW, which is able to secrete histamine, to wild-type mice reduced lung eosinophilia and suppressed ex vivo OVA-stimulated cytokine secretion from lung cells in the OVA respiratory inflammation mouse model. In histamine receptor 2 (H2R)-deficient mice, administration of histamine-secreting bacteria also reduced inflammatory cell numbers in bronchoalveolar lavage (BAL). However, the suppressive effect of bacterial-derived histamine on BAL inflammation was lost in HDC-deficient mice. This loss of activity was associated with increased expression of histamine degrading enzymes and reduced histamine receptor expression. CONCLUSION: Histamine secretion from bacteria within the gut can have immunological consequences at distant mucosal sites, such as within the lung. These effects are influenced by host histamine receptor expression and the expression of histamine degrading enzymes.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Histamina/biossíntese , Imunidade , Pulmão/imunologia , Pulmão/metabolismo , Animais , Modelos Animais de Doenças , Escherichia coli/fisiologia , Histidina Descarboxilase/deficiência , Histidina Descarboxilase/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo
4.
Allergy ; 74(12): 2312-2319, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31090937

RESUMO

Novel therapies such as type 2 targeting biologics are emerging treatment options for patients with chronic inflammatory respiratory diseases, fulfilling the needs of severely uncontrolled patients. The majority of patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and over half of patients with asthma show a type 2 inflammatory signature in sinonasal mucosa and/or lungs. Importantly, both chronic respiratory diseases are frequent comorbidities, ensuring alleviation of both upper and lower airway pathology by systemic biological therapy. Type 2-targeting biologics such as anti-IgE, anti-IL4Rα, anti-IL5, and anti-IL5Rα have entered the market for selected pheno/endotypes of asthma patients and may soon also become available for CRSwNP patients. Given the high prevalence of chronic respiratory diseases and the high cost associated with biologics, patient selection is crucial in order to implement such therapies into chronic respiratory disease care pathways. The European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA) organized a multidisciplinary Expert Board Meeting to discuss the positioning of biologics into the care pathways for CRSwNP patients with and without comorbid asthma.


Assuntos
Asma/complicações , Produtos Biológicos/uso terapêutico , Pólipos Nasais/complicações , Rinite/complicações , Rinite/tratamento farmacológico , Sinusite/complicações , Sinusite/tratamento farmacológico , Produtos Biológicos/administração & dosagem , Produtos Biológicos/efeitos adversos , Doença Crônica , Tomada de Decisão Clínica , Comorbidade , Gerenciamento Clínico , Necessidades e Demandas de Serviços de Saúde , Humanos , Pesquisa , Resultado do Tratamento
5.
J Allergy Clin Immunol ; 141(1): 382-390.e7, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629745

RESUMO

BACKGROUND: Childhood exposure to a farm environment has been shown to protect against the development of inflammatory diseases, such as allergy, asthma, and inflammatory bowel disease. OBJECTIVE: We sought to investigate whether both exposure to microbes and exposure to structures of nonmicrobial origin, such as the sialic acid N-glycolylneuraminic acid (Neu5Gc), might play a significant role. METHODS: Exposure to Neu5Gc was evaluated by quantifying anti-Neu5Gc antibody levels in sera of children enrolled in 2 farm studies: the Prevention of Allergy Risk factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle (PARSIFAL) study (n = 299) and the Protection Against Allergy Study in Rural Environments (PASTURE) birth cohort (cord blood [n = 836], 1 year [n = 734], 4.5 years [n = 700], and 6 years [n = 728]), and we associated them with asthma and wheeze. The effect of Neu5Gc was examined in murine airway inflammation and colitis models, and the role of Neu5Gc in regulating immune activation was assessed based on helper T-cell and regulatory T-cell activation in mice. RESULTS: In children anti-Neu5Gc IgG levels correlated positively with living on a farm and increased peripheral blood forkhead box protein 3 expression and correlated inversely with wheezing and asthma in nonatopic subjects. Exposure to Neu5Gc in mice resulted in reduced airway hyperresponsiveness and inflammatory cell recruitment to the lung. Furthermore, Neu5Gc administration to mice reduced the severity of a colitis model. Mechanistically, we found that Neu5Gc exposure reduced IL-17+ T-cell numbers and supported differentiation of regulatory T cells. CONCLUSIONS: In addition to microbial exposure, increased exposure to non-microbial-derived Neu5Gc might contribute to the protective effects associated with the farm environment.


Assuntos
Colite/imunologia , Colite/prevenção & controle , Fazendeiros , Inflamação/imunologia , Inflamação/prevenção & controle , Ácidos Neuramínicos/imunologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/prevenção & controle , Fatores Etários , Alérgenos/imunologia , Animais , Biomarcadores , Criança , Pré-Escolar , Colite/diagnóstico , Estudos Transversais , Modelos Animais de Doenças , Exposição Ambiental , Humanos , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Lactente , Inflamação/diagnóstico , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Vigilância da População , Doenças Respiratórias/diagnóstico , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
Microb Ecol Health Dis ; 28(1): 1353881, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959180

RESUMO

Background: Biogenic amines (BAs) are metabolites produced by the decarboxylation of amino acids with significant physiological functions in eukaryotic and prokaryotic cells. BAs can be produced by bacteria in fermented foods, but little is known concerning the potential for microbes within the human gut microbiota to produce or degrade BAs. Objective: To isolate and identify BA-producing and BA-degrading microbes from the human gastrointestinal tract. Design: Fecal samples from human volunteers were screened on multiple growth media, under multiple growth conditions. Bacterial species were identified using 16S rRNA sequencing and BA production or degradation was assessed using ultra-performance liquid chromatography. Results: In total, 74 BA-producing or BA-degrading strains were isolated from the human gut. These isolates belong to the genera Bifidobacterium, Clostridium, Enterococcus, Lactobacillus, Pediococcus, Streptococcus, Enterobacter, Escherichia, Klebsiella, Morganella and Proteus. While differences in production or degradation of specific BAs were observed at the strain level, our results suggest that these metabolic activities are widely spread across different taxa present within the human gut microbiota. Conclusions: The isolation and identification of microbes from the human gut with BA-producing and BA-degrading metabolic activity is an important first step in developing a better understanding of how these metabolites influence health and disease.

8.
Appl Environ Microbiol ; 80(22): 7061-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193000

RESUMO

Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Glutationa Redutase/metabolismo , Nanoestruturas/análise , Pseudomonas/enzimologia , Telúrio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biotransformação , Estabilidade Enzimática , Glutationa Redutase/química , Glutationa Redutase/genética , Oxirredução , Pseudomonas/química , Pseudomonas/genética , Pseudomonas/metabolismo
9.
Commun Biol ; 7(1): 670, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822061

RESUMO

Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined. Here we show that early postnatal stress in mice shifts the fecal microbial composition (binary Jaccard index) throughout life, including abundance of eight amplicon sequencing variants (ASVs). Further effects on fecal microbial composition, structure (weighted Jaccard index), and abundance of 16 ASVs are detected in the progeny across two generations. These effects are not accompanied by changes in bacterial metabolites in any generation. These results suggest that changes in the fecal microbial community induced by early life traumatic stress can be perpetuated from exposed parent to the offspring.


Assuntos
Fezes , Microbioma Gastrointestinal , Estresse Psicológico , Animais , Fezes/microbiologia , Camundongos , Estresse Psicológico/microbiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Bactérias/genética , Bactérias/classificação
10.
Front Nutr ; 11: 1360199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389799

RESUMO

To produce the health-associated metabolite propionate, gut microbes require vitamin B12 as a cofactor to convert succinate to propionate. B12 is sourced in the human gut from the unabsorbed dietary fraction and in situ microbial production. However, experimental data for B12 production by gut microbes is scarce, especially on their produced B12-analogues. Further, the promotion of propionate production by microbially-produced and dietary B12 is not yet fully understood. Here, we demonstrated B12 production in 6 out of 8 in silico predicted B12-producing bacteria from the human gut. Next, we showed in vitro that B12 produced by Blautia hydrogenotrophica, Marvinbryantia formatexigens, and Blautia producta promoted succinate to propionate conversion of two prevalent B12-auxotrophic gut bacteria, Akkermansia muciniphila and Bacteroides thetaiotaomicron. Finally, we examined the propiogenic effect of commercially available B12-analogues present in the human diet (cyano-B12, adenosyl-B12 and hydroxy-B12) at two doses. The low dose resulted in partial conversion of succinate to propionate for A. muciniphila when grown with adenosyl-B12 (14.6 ± 2.4 mM succinate and 18.7 ± 0.6 mM propionate) and hydroxy-B12 (13.0 ± 1.1 mM and 21.9 ± 1.2 mM), in comparison to cyano-B12 (0.7 ± 0.1 mM and 34.1 ± 0.1 mM). Higher doses of adenosyl-B12 and hydroxy-B12 resulted in significantly more conversion of succinate to propionate in both propionate-producing species, compared to the low dose. B12 analogues have different potential to impact the propionate metabolism of prevalent propionate producers in the gut. These results could contribute to strategies for managing gut disorders associated with decreased propionate production.

11.
ISME Commun ; 4(1): ycae035, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38562261

RESUMO

The anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber. We characterized the influence of the gas phase on the medium chemistry and microbial physiology and introduced a modular medium preparation process to enable the testing of several conditions simultaneously. Furthermore, we identified a medium formulation that maximized the compositional similarity of ex vivo cultures and donor microbiota while limiting the bloom of Enterobacteriaceae. Lastly, we validated the protocol by demonstrating that cultivated fecal microbiota responded similarly to dietary fibers (resistant dextrin, soluble starch) and drugs (ciprofloxacin, 5-fluorouracil) as reported in vivo. This high-throughput cultivation protocol has the potential to facilitate culture-dependent studies, accelerate the discovery of gut microbiota-diet-drug-host interactions, and pave the way to personalized microbiota-centered interventions.

12.
Int J Syst Evol Microbiol ; 63(Pt 4): 1485-1491, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22863987

RESUMO

A gram-positive, spore-forming, rod-shaped bacterium, designated J1(T) was isolated from deep-sea mud collected from the South China Sea and subjected to polyphasic taxonomic investigation. Phylogenetic analysis based on 16S rRNA gene sequences revealed that J1(T) clustered with the type strains of Amphibacillus cookii, Amphibacillus sediminis and Amphibacillus jilinensis and exhibited a range of similarity of 93.9-97.0 % to members of the genus Amphibacillus. The DNA G+C content was 36.7 mol%. Chemotaxonomic analysis showed no quinones, and the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid for strain J1(T). The major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. Strain J1(T) was positive for catalase activity and negative for oxidase activity. On the basis of phylogenetic position and phenotypic properties, strain J1(T) represents a novel species of the genus Amphibacillus and the name Amphibacillus marinus sp. nov. is proposed. The type strain is J1(T) ( = CGMCC 1.10434(T) = JCM 17099(T)).


Assuntos
Bacillaceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Microbiologia da Água , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Catalase/metabolismo , China , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Dados de Sequência Molecular , Quinonas/análise , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
14.
Front Microbiol ; 14: 1281058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075883

RESUMO

Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.

15.
Int J Syst Evol Microbiol ; 62(Pt 9): 2090-2096, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22038999

RESUMO

Novel strains of facultatively aerobic, moderately alkaliphilic and facultatively halophilic bacteria were isolated from a sediment sample taken from the Southern Arm of Great Salt Lake, Utah. Cells of strain JW/BP-GSL-QD(T) (and related strains JW/BP-GSL-RA and JW/BP-GSL-WB) were rod-shaped, spore-forming, motile bacteria with variable Gram-staining. Strain JW/BP-GSL-QD(T) grew under aerobic conditions between 14.5 and 47 °C (optimum 39 °C), in the pH(37 °C) range 6.5-10.3 (optimum pH(37 °C) 8.0), and between 0.1 and 4.5 M Na(+) (optimum 0.9 M Na(+)). No growth was observed in the absence of supplemented Na(+). Strain JW/BP-GSL-QD(T) utilized L-arabinose, D-fructose, D-galactose, D-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylitol and D-xylose under both aerobic and anaerobic conditions, and used ethanol and methanol only under aerobic conditions. Strains JW/BP-GSL-WB and JW/BP-GSL-RA had the same profiles except that methanol was not used aerobically. During growth on glucose, the major organic compounds formed under aerobic conditions were acetate and lactate, and under anaerobic conditions, the fermentation products were formate, acetate, lactate and ethanol. Oxidase and catalase activities were not detected and cytochrome was absent. No respiratory quinones were detected. The main cellular fatty acids were iso-C(15 : 0) (39.1 %) and anteiso-C(15 : 0) (36.3 %). Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid. Additionally, a small amount of an unknown glycolipid was detected. The DNA G+C content of strain JW/BP-GSL-QD(T) was 35.4 mol% (determined by HPLC). For strain JW/BP-GSL-QD(T) the highest degree of 16S rRNA gene sequence similarity was found with Amphibacillus jilinensis (98.6 %), Amphibacillus sediminis (96.7 %) and Amphibacillus tropicus (95.6 %). The level of DNA-DNA relatedness between strain JW/BP-GSL-QD(T) and A. jilinensis Y1(T) was 58 %. On the basis of physiological, chemotaxonomic and phylogenetic data, strain JW/BP-GSL-QD(T) represents a novel species of the genus Amphibacillus, for which the name Amphibacillus cookii sp. nov. is proposed. The type strain is JW/BP-GSL-QD(T) (= ATCC BAA-2118(T) = DSM 23721(T)).


Assuntos
Bacillaceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Carboidratos/análise , DNA Bacteriano/genética , Ácidos Graxos/análise , Fermentação , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Análise de Sequência de DNA , Esporos Bacterianos/crescimento & desenvolvimento , Temperatura , Utah
17.
Front Microbiol ; 13: 853735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495677

RESUMO

Uricase catalyzes the conversion of uric acid into allantoin with concomitant reduction of molecular oxygen to hydrogen peroxide. In humans, uricase is not functional, thereby predisposing individuals to hyperuricemia, a metabolic disturbance associated with gout, chronic kidney disorders, and cardiovascular diseases. The efficacy of current therapies to treat hyperuricemia is limited, and novel approaches are therefore desired, for instance using uricase-expressing probiotic strains. Here, we evaluated UV-spectrophotometric and H2O2-based fluorescent assays to enable the rapid identification of uricase activity in a broad panel of lactobacilli, Bacillus, and Bifidobacterium species. We highlighted abiotic (medium composition and mode of sterilization) and biotic (H2O2-producing strains) factors impacting the measurements' accuracy, and reported on the stepwise optimization of a simple, fast, and robust high-throughput UV-spectrophotometric method to screen uricase activity using whole bacterial suspension, thereby assessing both cell-associated and extracellular activity. The validity of the optimized assay, based on the monitoring of uric acid degradation at 300 nm, was confirmed via liquid chromatography. Finally, a panel of 319 Qualified Presumption of Safety (QPS) strains of lactobacilli (18 species covering nine genera), Bacillus (three species), and Bifidobacterium (four species) were screened for uricase activity using the optimized method. All 319 strains, but the positive control Bacillus sp. DSM 1306, were uricase-negative, indicating that this activity is rare among these genera, especially in isolates from food or feces. Altogether, the UV-spectrophotometric high-throughput assay based on whole bacterial suspension reported here can be used to rapidly screen large microbial collections, by simultaneously detecting cell-associated and extracellular uricase activity, thereby accelerating the identification of uricolytic strains with therapeutic potential to treat hyperuricemia.

18.
Front Nutr ; 9: 1070155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532531

RESUMO

Vitamin B12 (cobalamin) is present in the human lower gastrointestinal tract either coming from the unabsorbed dietary fraction or from in situ production of the gut microbiota. However, it is unclear whether the gut microbial communities need exogenous B12 for growth and metabolism, or whether B12 in low and high levels could affect gut community composition and metabolite production. Here, we investigated in vitro B12 production of human fecal microbiota and the effects of different levels of B12 (as cyanocobalamin) on composition and activity. Eight fecal communities from healthy human adults distributed over three enterotypes, dominated by Firmicutes (n = 5), Bacteroides (n = 1) or Prevotella (n = 2) were used to perform batch fermentations in Macfarlane medium supplemented with low B12 medium (Control, 5 ng/ml, within the tested fecal range), no B12 addition (NB12), and high B12 addition (ExtraB12, 2500 ng/ml). The microbiota community composition (qPCR, 16S rRNA metabarcoding), metabolic activity (HPLC-RI), and B12 levels (UHPLC-DAD) were measured after 24 h incubation at 37°C under strict anaerobic conditions. All fecal microbial communities produced B12 in the NB12 condition after 24 h, in the range from 152 ± 4 to 564 ± 25 ng/ml. None of the B12 treatments had an impact on total bacterial growth, community richness, diversity and total metabolite production, compared to the low B12 control. However, a significant increase of propionate was measured in ExtraB12 compared to NB12. Most taxonomic and metabolite changes compared to control incubations were donor-dependent, implying donor-microbiota-specific changes upon B12 treatments. Our in vitro data suggest that healthy human adult gut microbial communities have the capacity to produce B12 at levels fulfilling their own requirements, independently of the initial B12 content tested in the donor's feces. Further, supplementation of exogenous dietary B12 may have limited impact on the healthy human gut microbial community composition and function.

19.
Pharmacol Res Perspect ; 9(4): e00837, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34289267

RESUMO

Asthma is a heterologous disease that is influenced by complex interactions between multiple environmental exposures, metabolism, and host immunoregulatory processes. Specific metabolites are increasingly recognized to influence respiratory inflammation. However, the role of protein-derived metabolites in regulating inflammatory responses in the lung are poorly described. The aims of the present study were to quantify polyamine levels in bronchoalveolar lavages (BALs) from healthy volunteers and asthma patients, and to evaluate the impact of each polyamine on inflammatory responses using in vitro models and in a house dust mite (HDM)-induced respiratory allergy model. Spermidine levels were decreased, while cadaverine levels were increased in BALs from asthma patients compared to healthy controls, using Ultra Performance Liquid Chromatography (UPLC). Both spermine and spermidine inhibit lipopolysaccharide (LPS)-induced cytokine secretion from human peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs) in vitro. In addition, oral gavage with spermine or spermidine modulate HDM-induced cell infiltration, cytokine secretion, and epithelial cell tight junction expression in murine models. Spermidine also reduces airway hyper-responsiveness. These results suggest that modulation of polyamine metabolism, in particular spermidine, is associated with respiratory inflammation and these molecules and pathways should be further explored as biomarkers of disease and potential targets for novel therapies.


Assuntos
Asma/metabolismo , Pulmão/metabolismo , Poliaminas/metabolismo , Alérgenos/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Pyroglyphidae/imunologia
20.
iScience ; 24(8): 102897, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401676

RESUMO

Aging is a major risk factor for cardiovascular diseases, including thrombotic events. The gut microbiota has been implicated in the development of thrombotic risk. Plant-derived omega-3 fatty acid ɑ-linolenic acid (ALA) confers beneficial anti-platelet and anti-inflammatory effects. Hence, antithrombotic activity elicited by ALA may be partly dependent on its interaction with gut microbiota during aging. Here, we demonstrate that lifelong dietary ALA decreases platelet hyperresponsiveness and thrombus formation in aged mice. These phenotypic changes can be partly attributed to alteration of microbial composition and reduction of its metabolite trimethylamine N-oxide and inflammatory mediators including TNF-α, as well as the upregulated production of short-chain fatty acid acetate. ALA-rich diet also dampens secretion of increased procoagulant factors, tissue factor and plasminogen activator inhibitor-1, in aged mice. Our results suggest long-term ALA supplementation as an attractive, accessible, and well-tolerated nutritional strategy against age-associated platelet hyperreactivity and thrombotic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA