Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; 20(20): e2307621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38111987

RESUMO

Layered double hydroxides (LDHs) are a class of functional materials that exhibit exceptional properties for diverse applications in areas such as heterogeneous catalysis, energy storage and conversion, and bio-medical applications, among others. Efforts have been devoted to produce millimeter-scale LDH structures for direct integration into functional devices. However, the controlled synthesis of self-supported continuous LDH materials with hierarchical structuring up to the millimeter scale through a straightforward one-pot reaction method remains unaddressed. Herein, it is shown that millimeter-scale self-supported LDH structures can be produced by means of a continuous flow microfluidic device in a rapid and reproducible one-pot process. Additionally, the microfluidic approach not only allows for an "on-the-fly" formation of unprecedented LDH composite structures, but also for the seamless integration of millimeter-scale LDH structures into functional devices. This method holds the potential to unlock the integrability of these materials, maintaining their performance and functionality, while diverging from conventional techniques like pelletization and densification that often compromise these aspects. This strategy will enable exciting advancements in LDH performance and functionality.

2.
Small ; 19(35): e2301981, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186376

RESUMO

Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.


Assuntos
Materiais Biocompatíveis , Poliésteres , Materiais Biocompatíveis/química , Poliésteres/química , Temperatura , Cristalização
3.
Small ; 18(33): e2203821, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867042

RESUMO

2D layered molybdenum disulfide (MoS2 ) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2 -based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near-infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on-the-fly biorecognition in minimally invasive oncotherapy applications. The proposed multi-therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic-related applications, circumventing current challenges of ablative procedures.


Assuntos
Molibdênio , Nanoestruturas , Dissulfetos , Raios Infravermelhos , Fototerapia/métodos
4.
Chem Rev ; 120(20): 11175-11193, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054168

RESUMO

During the last two decades, engineering motion with small-scale matter has received much attention in several areas of research, ranging from supramolecular chemistry and colloidal science to robotics and automation. The numerous discoveries and innovative concepts realized in motile micro- and nanostructures have converged in the field of small-scale swimmers. These man-made micro- and nanomachines can move in fluids by transforming different forms of energy to mechanical motion. Recently, metal-organic frameworks (MOFs), which are crystalline coordination polymers with high porosity, have been proposed as key building blocks in several small-scale swimmer designs. These materials possess the required features for motile micro- and nanodevices, such as high cargo-loading capacity, biodegradability, biocompatibility, and stimuli-responsiveness. In this review, we take a journey through the major breakthroughs and milestones realized in the area of MOF-based small-scale swimmers. First, a brief introduction to the field of small-scale swimmers is provided. Next, we review different strategies that have been reported for imparting motion to MOFs. Finally, we emphasize the incorporation of molecular machines into the MOF's architecture as the means to create highly integrated small-scale swimmers. The strategies and developments explored in this review pave the way toward the use of motile MOFs for a variety of applications in the fields of biomedicine, environmental remediation, and on-the-fly chemistry.

5.
Angew Chem Int Ed Engl ; 60(49): 25958-25965, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726815

RESUMO

Here we present room-temperature spin-dependent charge transport measurements in single-molecule junctions made of metalloporphyrin-based supramolecular assemblies. They display large conductance switching for magnetoresistance in a single-molecule junction. The magnetoresistance depends acutely on the probed electron pathway through the supramolecular wire: those involving the metal center showed marked magnetoresistance effects as opposed to those exclusively involving the porphyrin ring which present nearly complete absence of spin-dependent charge transport. The molecular junction magnetoresistance is highly anisotropic, being observable when the magnetization of the ferromagnetic junction electrode is oriented along the main molecular junction axis, and almost suppressed when it is perpendicular. The key ingredients for the above effect to manifest are the electronic structure of the paramagnetic metalloporphyrin, and the spinterface created at the molecule-electrode contact.

6.
Angew Chem Int Ed Engl ; 60(29): 15920-15927, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729645

RESUMO

Coordination polymers (CPs), including metal-organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimentally observed when crystallization was triggered under microfluidic mixing. Full-atom molecular dynamics simulations also confirm the occurrence of these two distinct pathways during crystal growth. In sharp contrast, a crystallization by particle attachment was observed under bulk (turbulent) mixing. These unprecedented results provide a sound basis for understanding the growth of CPs and open up new avenues for the engineering of porous materials by using out-of-equilibrium conditions.

7.
J Am Chem Soc ; 142(20): 9372-9381, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32307978

RESUMO

Controlling and understanding the mechanisms that harness crystallization processes is of utmost importance in contemporary materials science and, in particular, in the realm of reticular solids where it still remains a great challenge. In this work, we show that environments mimicking microgravity conditions can harness the size and shape of functional biogenic crystals such as peptide-based metal-organic frameworks (MOFs). In particular, we demonstrate formation of the largest single crystals with controlled nonequilibrium shapes of peptide-based MOFs reported to date (e.g., those featuring curved crystal habits), as opposed to the typical polyhedral microcrystals obtained under bulk crystallization conditions. Such unique nonequilibrium morphologies arise from the interplay between the diffusion-controlled supply of precursors in simulated microgravity environments and the physical constraints imposed during crystal growth. In fact, our method mimics two main strategies of morphogenesis in biomineralization, i.e., spatial and morphological control, both being largely unexplored in the field of self-assembled functional materials. The presented results may open new opportunities to study and understand fundamental questions of relevance to materials science, such as how the size and shape of artificial crystals can influence their properties and functions while providing a strategy to tailor the size and shape of peptide-based MOF single crystals to specific applications.

8.
J Am Chem Soc ; 142(7): 3540-3547, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31986022

RESUMO

Covalent organic frameworks (COFs) are commonly synthesized under harsh conditions yielding unprocessable powders. Control in their crystallization process and growth has been limited to studies conducted in hazardous organic solvents. Herein, we report a one-pot synthetic method that yields stable aqueous colloidal solutions of sub-20 nm crystalline imine-based COF particles at room temperature and ambient pressure. Additionally, through the combination of experimental and computational studies, we investigated the mechanisms and forces underlying the formation of such imine-based COF colloids in water. Further, we show that our method can be used to process the colloidal solution into 2D and 3D COF shapes as well as to generate a COF ink that can be directly printed onto surfaces. These findings should open new vistas in COF chemistry, enabling new application areas.


Assuntos
Estruturas Metalorgânicas/síntese química , Água/química , Aldeídos/química , Derivados de Benzeno/química , Biomimética/métodos , Coloides/síntese química , Coloides/química , Cristalização , Iminas/síntese química , Iminas/química , Micelas , Tamanho da Partícula
9.
Angew Chem Int Ed Engl ; 59(43): 19193-19201, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33448538

RESUMO

Nature has developed supramolecular constructs to deliver outstanding charge-transport capabilities using metalloporphyrin-based supramolecular arrays. Herein we incorporate simple, naturally inspired supramolecular interactions via the axial complexation of metalloporphyrins into the formation of a single-molecule wire in a nanoscale gap. Small structural changes in the axial coordinating linkers result in dramatic changes in the transport properties of the metalloporphyrin-based wire. The increased flexibility of a pyridine-4-yl-methanethiol ligand due to an extra methyl group, as compared to a more rigid 4-pyridinethiol linker, allows the pyridine-4-yl-methanethiol ligand to adopt an unexpected highly conductive stacked structure between the two junction electrodes and the metalloporphyrin ring. DFT calculations reveal a molecular junction structure composed of a shifted stack of the two pyridinic linkers and the metalloporphyrin ring. In contrast, the more rigid 4-mercaptopyridine ligand presents a more classical lifted octahedral coordination of the metalloporphyrin metal center, leading to a longer electron pathway of lower conductance. This works opens to supramolecular electronics, a concept already exploited in natural organisms.

10.
Angew Chem Int Ed Engl ; 58(38): 13550-13555, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31309662

RESUMO

Metal-organic frameworks (MOFs) capable of mobility and manipulation are attractive materials for potential applications in targeted drug delivery, catalysis, and small-scale machines. One way of rendering MOFs navigable is incorporating magnetically responsive nanostructures, which usually involve at least two preparation steps: the growth of the magnetic nanomaterial and its incorporation during the synthesis of the MOF crystals. Now, by using optimal combinations of salts and ligands, zeolitic imidazolate framework composite structures with ferrimagnetic behavior can be readily obtained via a one-step synthetic procedure, that is, without the incorporation of extrinsic magnetic components. The ferrimagnetism of the composite originates from binary oxides of iron and transition metals such as cobalt. This approach exhibits similarities to the natural mineralization of iron oxide species, as is observed in ores and in biomineralization.

11.
J Am Chem Soc ; 138(22): 6920-3, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203551

RESUMO

The effect of diffusion-controlled microfluidic conditions in the very initial stages of a far-from-equilibrium self-assembly process on the evolution of aggregate chirality in a multicomponent supramolecular system is shown.

12.
Chem Soc Rev ; 43(7): 2253-71, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24336681

RESUMO

Microfluidics is a multidisciplinary field of science based on the manipulation of fluids in sub-millimeter dimensions where the fundamental fluid physics changes dramatically when compared to macroscale fluid physical phenomena. Therefore, the conditions that microfluidic technologies offer are completely different from those of bulk set-ups, and thus they are very interesting for the study of crystallisation because diffusion, mixing and mass and heat transport are all finely controlled, and are easily modulated. This tutorial review is intended to give a broad and up-to-date overview of the distinct microfluidic approaches that have been employed so far for crystallisation studies for the uninitiated in these techniques. Main emphasis will be given to microfluidic platforms operating under continuous flow regimes, droplet-based methods, valve-based approaches, well-based methods, and digital microfluidics. This tutorial does not intend to give detailed methodology, but rather provides illustrative examples which capture the attention of the reader and allow them to appreciate the unique features that microfluidic technologies can offer towards the study of different crystallisation processes. Indeed, crystallisation studies of different types of crystalline matter including organic, inorganic and metal-organic materials are presented.

13.
Nano Lett ; 14(8): 4751-6, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24978587

RESUMO

Porphyrin-based molecular wires are promising candidates for nanoelectronic and photovoltaic devices due to the porphyrin chemical stability and unique optoelectronic properties. An important aim toward exploiting single porphyrin molecules in nanoscale devices is to possess the ability to control the electrical pathways across them. Herein, we demonstrate a method to build single-molecule wires with metalloporphyrins via their central metal ion by chemically modifying both an STM tip and surface electrodes with pyridin-4-yl-methanethiol, a molecule that has strong affinity for coordination with the metal ion of the porphyrin. The new flat configuration resulted in single-molecule junctions of exceedingly high lifetime and of conductance 3 orders of magnitude larger than that obtained previously for similar porphyrin molecules but wired from either end of the porphyrin ring. This work presents a new concept of building highly efficient single-molecule electrical contacts by exploiting metal coordination chemistry.

14.
Adv Mater ; 36(1): e2305925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37801654

RESUMO

In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.

15.
Adv Mater ; 36(18): e2310084, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101447

RESUMO

Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.

16.
Adv Mater ; : e2402309, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780003

RESUMO

Soft materials play a crucial role in small-scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small-scale soft devices. In this study, microfluidics is leveraged to precisely control reaction-diffusion (RD) processes to generate multifunctional and compartmentalized calcium-cross-linkable alginate-based microfibers. Under RD conditions, sophisticated alginate-based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross-linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll-up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small-scale devices.

17.
Nat Commun ; 15(1): 790, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278792

RESUMO

Electric fields have been highlighted as a smart reagent in nature's enzymatic machinery, as they can directly trigger or accelerate chemical processes with stereo- and regio-specificity. In enzymatic catalysis, controlled mass transport of chemical species is also key in facilitating the availability of reactants in the active reaction site. However, recent progress in developing a clean catalysis that profits from oriented electric fields is limited to theoretical and experimental studies at the single molecule level, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the conventional Cu(I) catalysis. Our custom-built microfluidic cell enhances reagent transport towards the electrified reactive interface. This continuous-flow microfluidic electrostatic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.


Assuntos
Microfluídica , Eletricidade Estática , Catálise , Domínio Catalítico
18.
Adv Mater ; : e2310701, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733269

RESUMO

Magnetic navigation systems are used to precisely manipulate magnetically responsive materials enabling the realization of new minimally invasive procedures using magnetic medical devices. Their widespread applicability has been constrained by high infrastructure demands and costs. The study reports on a portable electromagnetic navigation system, the Navion, which is capable of generating a large magnetic field over a large workspace. The system is easy to install in hospital operating rooms and transportable through health care facilities, aiding in the widespread adoption of magnetically responsive medical devices. First, the design and implementation approach for the system are introduced and its performance is characterized. Next, in vitro navigation of different microrobot structures is demonstrated using magnetic field gradients and rotating magnetic fields. Spherical permanent magnets, electroplated cylindrical microrobots, microparticle swarms, and magnetic composite bacteria-inspired helical structures are investigated. The navigation of magnetic catheters is also demonstrated in two challenging endovascular tasks: 1) an angiography procedure and 2) deep navigation within the circle of Willis. Catheter navigation is demonstrated in a porcine model in vivo to perform an angiography under magnetic guidance.

19.
Adv Mater ; 36(14): e2306345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146105

RESUMO

Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.

20.
Small ; 9(24): 4160-7, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23828757

RESUMO

Bottom-up fabrication of self-assembled structures made of nanoparticles may lead to new materials, arrays and devices with great promise for myriad applications. Here a new class of metal-peptide scaffolds is reported: coordination polymer Ag(I)-DLL belt-like crystals, which enable the dual-template synthesis of more sophisticated nanoparticle superstructures. In these biorelated scaffolds, the self-assembly and recognition capacities of peptides and the selective reduction of Ag(I) ions to Ag are simultaneously exploited to control the growth and assembly of inorganic nanoparticles: first on their surfaces, and then inside the structures themselves. The templated internal Ag nanoparticles are well confined and closely packed, conditions that favour electrical conductivity in the superstructures. It is anticipated that these Ag(I)-DLL belts could be applied to create long (>100 µm) conductive Ag@Ag nanoparticle superstructures and polymetallic, multifunctional Fe3 O4 @Ag nanoparticle composites that marry the magnetic and conductive properties of the two nanoparticle types.


Assuntos
Metais/química , Nanopartículas/química , Peptídeos/química , Polímeros/química , Materiais Biocompatíveis/química , Condutividade Elétrica , Íons , Magnetismo , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Nanotecnologia , Prata/química , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA